
Prepared for
Yield Basis

Audited by
fedebianu
adriro

August 12, 2025

Yield Basis DAO
Security Review

Smart Contract Security Assessment

Yield Basis DAO Security Review

Contents

Review Summary 2
1 Protocol Overview . 2
2 Audit Scope . 2
3 Risk Assessment Framework . 2

3.1 Severity Classification . 2
4 Key Findings . 3
5 Overall Assessment . 3

Audit Overview 3
1 Project Information . 3
2 Audit Team . 3
3 Audit Resources . 3
4 Critical Findings . 5

4.1 NFT reentrancy allows using voting power when transferring the token . 5
4.2 Incorrect scale in LiquidityGauge checkpoint 5
4.3 User checkpoint in LiquidityGauge fails to store rewards 6
4.4 Incorrect interpretation of released rewards in LiquidityGauge 7

5 High Findings . 8
5.1 Incorrect emissions rate in YB token . 8
5.2 VotingEscrow.increase_amount() has a parameter inconsistency that

could lead to unauthorized lock modifications 9
5.3 Token emission calculations use stale weights for non-checkpointed gauges 10
5.4 Incorrect finish time calculation changes reward distribution rate instead

of maintaining it . 10
6 Medium Findings . 11

6.1 LiquidityGauge.withdraw() is broken due to incorrect assert logic 12
7 Low Findings . 12

7.1 Wrong condition in preview_emissions() 12
7.2 Prevent LP token from being registered as rewards 13

8 Gas Savings Findings . 13
8.1 Remove unused variables in VotingEscrow._merge_positions() . . . 13

9 Informational Findings . 14
9.1 Follow CEI pattern . 14
9.2 Fix typos . 14
9.3 VotingEscrow.getPastVotes() should not return future voting power 15
9.4 Check for array length mismatch . 15
9.5 Missing exports from modules . 16

10 Final Remarks . 16

— 1 —

Yield Basis DAO Security Review

Review Summary

1 Protocol Overview

Yield Basis is a protocol that features a new type of AMM that focuses on solving impermanent
loss. The current review targets the DAO contracts of the protocol, including the governance
token, along with the mechanism to vote, incentivize pools, and distribute rewards.

2 Audit Scope

This audit covers 6 smart contracts across 5 days of review.

contracts/dao

├── CliffEscrow.vy

├── GaugeController.vy

├── LiquidityGauge.vy

├── VestingEscrow.vy

├── VotingEscrow.vy

└── YB.vy

3 Risk Assessment Framework

3.1 Severity Classification

Severity Description Potential Impact
Critical Immediate threat to user funds or protocol

integrity
Direct loss of funds, protocol
compromise

High Significant security risk requiring urgent
attention

Potential fund loss, major
functionality disruption

Medium Important issue that should be addressed Limited fund risk, functional-
ity concerns

Low Minor issue with minimal impact Best practice violations, minor
inefficiencies

Undetermined Findings whose impact could not be fully
assessed within the time constraints of the
engagement. These issues may range from
low to critical severity, and although their
exact consequences remain uncertain, they
present a sufficient potential risk to war-
rant attention and remediation.

Varies based on actual severity

Gas Findings that can improve the gas effi-
ciency of the contracts.

Reduced transaction costs

Informational Code quality and best practice recommen-
dations

Improved maintainability and
readability

— 2 —

Yield Basis DAO Security Review

4 Key Findings

Breakdown of Finding Impacts

Impact Level Count

Critical 4

High 4

Medium 1

Low 2

Informational 5

Figure 1: Distribution of security findings by impact level

5 Overall Assessment

Given the complexity of the contracts and the high number of severe findings present in this
report, the auditors recommend strengthening the testing suite and conducting a new security
review.

Audit Overview

1 Project Information

Protocol Name: Yield Basis
Repository: https://github.com/yield-basis/yb-core
Commit Hash: f6104fc017a6022f0ad464bd8d5147850d1166f2
Commit URL:
https://github.com/yield-basis/yb-core/commit/f6104fc017a6022f0ad464bd8d5147850d1166f2

2 Audit Team

fedebianu, adriro

3 Audit Resources

Code repositories and documentation

— 3 —

Yield Basis DAO Security Review

Category Mark Description

Access Control Good Correct usage of access control protection.

Mathematics Low Several issues related to calculations or scaling were
detected.

Complexity Average The contracts are well-designed, but contain complex
logic, particularly within the GaugeController and
LiquidityGauge contracts.

Libraries Good The codebase relies on the snekmate library.

Decentralization Good The protocol and its emissions are governed by a set
of decentralized contracts.

Code Stability Good The codebase remained stable during the review.

Documentation Average The contracts are decorated with NatSpec metadata.
Additional high-level documentation focused on ex-
plaining the dynamics of voting and gauges is encour-
aged.

Monitoring Good Monitoring events are in place.

Testing and
verification

Low Despite the presence of fuzzing tests in the codebase,
multiple severe issues remained undetected.

Table 1: Code Evaluation Matrix

— 4 —

Yield Basis DAO Security Review

4 Critical Findings

4.1 NFT reentrancy allows using voting power when transferring the token

A reentrancy in safeTransferFrom() would allow an attacker to use their voting power just
before being merged with the recipient.

Technical Details

The implementation of safeTransferFrom() does the transfer with the callback after
performing the check but before clearing the owner’s voting power.

1 538: def safeTransferFrom(owner: address, to: address, token_id: uint256, data: Bytes[1

_024] = b""):

2 539: assert erc721._is_approved_or_owner(msg.sender, token_id), "erc721: caller is

not token owner or approved"

3 540: assert self._ve_transfer_allowed(owner, to), "Need max veLock"

4 541: erc721._safe_transfer(owner, to, token_id, data)

5 542: self._merge_positions(owner, to)

6 543: erc721._burn(token_id)

This would allow a malicious user to exercise their voting power in between the transfer, as the
check is done before the callback, and their votes are reset after the callback.

Impact

Critical. Voting power can be reused multiple times by performing the described attack.

Recommendation

Since the token is immediately burned after transferring, the underlying transfer operation is
not needed; the token can be just burned.

Developer Response

Fixed for both transferFrom() and safeTransferFrom() in
4d6cd7183e39487a80dc51b7976099b156f440a0.

4.2 Incorrect scale in LiquidityGauge checkpoint

The user reward calculation is incorrectly normalized, leading to an overinflated amount.

Technical Details

In _checkpoint() , integral_inv_supply is scaled by 1e36 but only normalized by
1e18 when calculating d_user_reward .

— 5 —

https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/VotingEscrow.vy#L538
https://github.com/yield-basis/yb-core/commit/4d6cd7183e39487a80dc51b7976099b156f440a0
https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/LiquidityGauge.vy#L139

Yield Basis DAO Security Review

1 139: def _checkpoint(reward: IERC20, d_reward: uint256, user: address) ->

RewardIntegrals:

2 140: r: RewardIntegrals = empty(RewardIntegrals)

3 141:

4 142: r.integral_inv_supply = self.integral_inv_supply

5 143: if block.timestamp > r.integral_inv_supply.t:

6 144: r.integral_inv_supply.v += unsafe_div(10**36 * (block.timestamp - r.

integral_inv_supply.t), erc4626.erc20.totalSupply)

7 145: r.integral_inv_supply.t = block.timestamp

8 146:

9 147: if reward.address != empty(address):

10 148: r.reward_rate_integral = self.reward_rate_integral[reward]

11 149: if block.timestamp > r.reward_rate_integral.t:

12 150: r.reward_rate_integral.v += (r.integral_inv_supply.v - self.

integral_inv_supply_4_token[reward]) * d_reward //\

13 151: (block.timestamp - r.reward_rate_integral.t)

14 152: r.reward_rate_integral.t = block.timestamp

15 153:

16 154: if user != empty(address):

17 155: r.user_rewards_integral = self.user_rewards_integral[user][reward]

18 156: if block.timestamp > r.user_rewards_integral.t:

19 157: r.d_user_reward = (r.reward_rate_integral.v - self.

reward_rate_integral_4_user[user][reward]) *\

20 158: erc4626.erc20.balanceOf[user] // 10**18

21 159: r.user_rewards_integral.v += r.d_user_reward

22 160: r.user_rewards_integral.t = block.timestamp

23 161:

24 162: return r

Impact

Critical. Reward amounts are inflated by a factor of 1e18 .

Recommendation

In d_user_reward , divide by 10**36 instead of 10**18 .

Developer Response

Fixed in dbc12194da1971ba7a32c459374b9de05a428787.

4.3 User checkpoint in LiquidityGauge fails to store rewards

Rewards assigned to users are lost when the user state is checkpointed.

Technical Details

Unlike claim() , the implementation of _checkpoint_user() does not transfer the earned
rewards to the user. However, these rewards are not stored in the contract state, so they cannot
be claimed later.

— 6 —

https://github.com/yield-basis/yb-core/commit/dbc12194da1971ba7a32c459374b9de05a428787
https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/LiquidityGauge.vy#L211
https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/LiquidityGauge.vy#L193

Yield Basis DAO Security Review

Impact

Critical. Earned rewards are lost when the user interacts with the vault.

Recommendation

The _checkpoint_user() function should store earned rewards (d_user_reward) in an
accumulator of pending rewards, which can be flushed in claim() . An alternative would be to
use user_rewards_integral.v , which is the historic accumulated rewards, but this would
also require an accumulator to track the withdrawn tokens to calculate the difference.

Developer Response

Added such an accumulator in 1b3b6f49c5c5140ffb2f2f5b97851e578e36f12b.

4.4 Incorrect interpretation of released rewards in LiquidityGauge

The LiquidityGauge contract uses the value of the checkpointed reward rate integral to
determine the updated amount of released reward tokens, leading to multiple accounting
problems.

Technical Details

The implementation of _get_vested_rewards() takes the value of
reward_rate_integral[token].v as the amount of released rewards up to the latest
checkpointed time (used_rewards).

1 170: last_reward_time: uint256 = self.reward_rate_integral[token].t

2 171: used_rewards: uint256 = self.reward_rate_integral[token].v

3 172: finish_time: uint256 = self.rewards[token].finish_time

4 173: total: uint256 = self.rewards[token].total

5 174: if finish_time > last_reward_time:

6 175: new_used: uint256 = (total - used_rewards) * (block.timestamp -

last_reward_time) //\

7 176: (finish_time - last_reward_time) + used_rewards

8 177: return min(new_used, total) - used_rewards

The used_rewards variable is then used to compute the remaining amount
(total - used_rewards) and to calculate the new value of distributed rewards (new_used).
However, taking the integral of the reward rate is incorrect, as the inverse of the total supply
already scales this value as part of the checkpoint process.

1 148: r.reward_rate_integral = self.reward_rate_integral[reward]

2 149: if block.timestamp > r.reward_rate_integral.t:

3 150: r.reward_rate_integral.v += (r.integral_inv_supply.v - self.

integral_inv_supply_4_token[reward]) * d_reward //\

4 151: (block.timestamp - r.reward_rate_integral.t)

5 152: r.reward_rate_integral.t = block.timestamp

— 7 —

https://github.com/yield-basis/yb-core/commit/1b3b6f49c5c5140ffb2f2f5b97851e578e36f12b
https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/LiquidityGauge.vy#L167

Yield Basis DAO Security Review

Impact

Critical. The issue leads to multiple accounting problems and side effects, potentially causing
the vault to malfunction.

Recommendation

Have a dedicated accumulator to measure the amount of distributed rewards per token. This
counter should be incremented by the return value of _vest_rewards() whenever the state is
persisted to storage (_checkpoint_user() , claim() , deposit_reward()).

Developer Response

Fixed in 657e8c679cb575f35681fab810ff6615ed113924.

5 High Findings

5.1 Incorrect emissions rate in YB token

The emission rate in the Yield Basis token is incorrectly scaled.

Technical Details

The emissions calculation is given by the implementation of _emissions() :

1 50: def _emissions(t: uint256, rate_factor: uint256) -> uint256:

2 51: assert rate_factor <= 10**18

3 52: dt: int256 = convert(t - self.last_minted, int256)

4 53: rate: int256 = convert(max_mint_rate * rate_factor // 10**18, int256)

5 54: reserve: int256 = convert(self.reserve, int256)

6 55: return convert(

7 56: reserve * (10**18 - math._wad_exp(-dt * rate // 10**18)) // 10**18,

8 57: uint256)

The rate variable is calculated as the max_mint_rate (max rate per second) scaled by the
rate_factor . However, the rate variable is then normalized again by 10**18 in the
expression of -dt * rate // 10**18 (line 56). Given dt and rate are denominated in
seconds, dividing by 10**18 will yield the incorrect result.

Impact

High. The emission rate in YB token is incorrect and will likely result in zero emissions.

Recommendation

The exponential term should multiply dt (elapsed seconds) by rate (emissions per second).

1 reserve * (10**18 - math._wad_exp(-dt * rate)) // 10**18

— 8 —

https://github.com/yield-basis/yb-core/commit/657e8c679cb575f35681fab810ff6615ed113924
https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/YB.vy#L50

Yield Basis DAO Security Review

Developer Response

Fixed in 14ff742f630a64f786beb5589ee978f541950768.

5.2 VotingEscrow.increase_amount() has a parameter inconsistency that could lead to
unauthorized lock modifications

VotingEscrow.increase_amount() has a critical parameter inconsistency that creates a
mismatch between validation and execution.

Technical Details

VotingEscrow.increase_amount() performs validation checks against msg.sender ’s lock
data but then calls _deposit_for(_for, ...) , which modifies the lock for the _for

address. This creates a scenario where the actual token deposit and lock modification occur for
the _for address. At the same time, the validation is done with msg.sender ’s lock data,
and the _locked parameter passed to _deposit_for contains msg.sender ’s lock data, not
_for ’s.

Impact

High. This vulnerability allows:

• Users to call the function for addresses that don’t have existing locks
• Bypassing validation that the target lock is valid and non-expired
• Creating inconsistent lock states where the wrong lock parameters are used
• Potential manipulation of the voting escrow system by depositing for invalid targets

Recommendation

Fix the parameter inconsistency by ensuring validation and operation target the same address:

1 @external

2 @nonreentrant

3 def increase_amount(_value: uint256, _for: address = msg.sender):

4 - _locked: LockedBalance = self.locked[msg.sender]

5 + _locked: LockedBalance = self.locked[_for]

7 assert _value > 0 # dev: need non-zero value

8 assert _locked.amount > 0, "No existing lock found"

9 assert _locked.end > block.timestamp, "Cannot add to expired lock.

Withdraw"

11 self._deposit_for(_for, _value, 0, _locked, LockActions.INCREASE_AMOUNT)

Alternatively, you can remove the _for parameter if it’s not needed.

— 9 —

https://github.com/yield-basis/yb-core/commit/14ff742f630a64f786beb5589ee978f541950768
https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/VotingEscrow.vy#L294

Yield Basis DAO Security Review

Developer Response

Fixed in 80137af5ce7e969f2a10d254b0a05756f3c2c6ce.

5.3 Token emission calculations use stale weights for non-checkpointed gauges

When checkpointing a specific gauge, the global emission rate calculation uses potentially stale
weights from other gauges that haven’t been recently checkpointed.

Technical Details

GaugeController._checkpoint_gauge() updates weights only for the target gauge, but
then uses global weight sums (aw_sum , w_sum) to calculate the emission rate factor.
If other gauges have changed their weights but haven’t been checkpointed, their stale weights
are still included in the global sums, leading to incorrect emission rate calculations.

Impact

High. Incorrect emission rates affect the entire protocol’s token distribution, potentially
over-minting or under-minting tokens based on outdated weight information.

Recommendation

Implement global gauge aggregation and update it during gauge checkpoints, similar to Curve’s
_get_total() approach, adapted for Yield Basis with no gauge types.

Developer Response

Disagree. That’s the thing. Weights are only ever updated with per-gauge checkpoint.
That checkpoint happens at voting as well as at claim. But if gauge, for example, had
adjustment number changed somehow - a stale number is applied all across the board before
checkpoint or claim happens.
It is by design. So weights CANNOT actually update without being checkpointed.
Disadvantage of this approach is that weights cannot be a pure function of time: they are only
updated in actions which cause checkpoints. But this is not a big disadvantage because
timescale of vote weight changes (years) is much larger than times between checkpoints (e.g.
between claims, or deposits/withdrawals).

5.4 Incorrect finish time calculation changes reward distribution rate instead of maintaining it

LiquidityGauge.deposit_reward() incorrectly calculates the new finish time when adding
rewards to an ongoing distribution period, resulting in unintended changes to the reward
distribution rate.

— 10 —

https://github.com/yield-basis/yb-core/commit/80137af5ce7e969f2a10d254b0a05756f3c2c6ce
https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/GaugeController.vy#L155
https://github.com/curvefi/curve-dao-contracts/blob/fa127b1cb7bf83e4f3d605f7244b7b4ed5ebe053/contracts/GaugeController.vy#L220

Yield Basis DAO Security Review

Technical Details

LiquidityGauge.deposit_reward() contains logic to extend the finish time when adding
rewards to maintain the current rate:

1 # Keep the reward rate

2 assert r.finish_time > block.timestamp, "Rate unknown"

3 r.finish_time = block.timestamp + (r.finish_time - block.timestamp) * (r.total + amount)

// r.total

However, this formula uses the cumulative total deposited tokens instead of the remaining
undistributed tokens, causing the distribution rate to change:
Example scenario:

• Initial: 1000 tokens over 10 days → rate = 100 tokens/day
• r.total = 1000 (cumulative total)
• After 6 days: 600 tokens distributed, 400 remaining
• Add 500 tokens using the current formula:
• remaining_time = 4 days

• r.total + amount = 1000 + 500 = 1500

• ratio = 1500 / 1000 = 1.5

• new_remaining_time = 4 * 1.5 = 6 days

• New rate = 900 / 6 = 150 tokens/day

The formula should use remaining tokens (400) instead of the cumulative total (1000) to
maintain the same rate:

• Correct ratio = (400 + 500) / 400 = 2.25

• Correct new time = 4 * 2.25 = 9 days

• Correct rate = 900 / 9 = 100 tokens/day

Impact

High. The reward distribution rate changes unexpectedly when adding tokens to ongoing
distributions, violating the stated intention to ”keep the reward rate”.

Recommendation

Calculate the extension based on the original rate to maintain consistent distribution:
block.timestamp + (undistributed_reward + amount) / reward_rate .

Developer Response

Fixed in b5a9150825ae440e77a512f90ed3a44d126c63ad.

6 Medium Findings

— 11 —

https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/LiquidityGauge.vy#L260
https://github.com/yield-basis/yb-core/commit/b5a9150825ae440e77a512f90ed3a44d126c63ad

Yield Basis DAO Security Review

6.1 LiquidityGauge.withdraw() is broken due to incorrect assert logic

LiquidityGauge.withdraw() contains an incorrect assert statement that validates the
wrong account’s withdrawal capacity, causing legitimate withdrawal operations to fail when
transferring assets to third parties.

Technical Details

In LiquidityGauge.withdraw() the assert checks _max_withdraw(receiver) instead
of _max_withdraw(owner) . The validation should ensure the owner has sufficient
withdrawable balance, not the receiver .

Impact

Medium. This bug breaks core functionality, but the severity is mitigated because redeem() is
correct and can be used instead.

Recommendation

Fix the assert to validate the owner ’s withdrawal capacity instead of the receiver ’s.

Developer Response

Fixed in 58ca825891930e069ad1a1f2c82581399a5004fa.

7 Low Findings

7.1 Wrong condition in preview_emissions()

The early return in preview_emissions() implements the wrong condition.

Technical Details

The implementation of preview_emissions() returns early with zero, using the wrong
condition. A gauge isn’t registered when time_weight[gauge] == 0 , a positive value means
the gauge has been enabled.

1 325: if self.time_weight[gauge] > 0:

2 326: return 0

Impact

Low. preview_emissions() always returns zero for registered gauges.

— 12 —

https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/LiquidityGauge.vy#L310
https://github.com/yield-basis/yb-core/commit/58ca825891930e069ad1a1f2c82581399a5004fa
https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/GaugeController.vy#L321

Yield Basis DAO Security Review

Recommendation

Change the condition to if self.time_weight[gauge] == 0 .

Developer Response

Fixed in 7192d1b8f7f7d303c3fd6fe39ae2358591ff995b.

7.2 Prevent LP token from being registered as rewards

Using the LP token as a reward would conflict with the vault’s accounting.

Technical Details

LP tokens sent by the distributor would be mixed with staked tokens and treated as the vault’s
assets, disrupting the accounting.

Impact

Low.

Recommendation

Check that the reward token is not the LP token in add_reward() .

1 def add_reward(token: IERC20, distributor: address):

2 assert token != YB, "YB"

3 + assert token != LP_TOKEN, "LP_TOKEN"

Developer Response

Fixed at 395d1db03e4a9aa892642022c794a7ef9c066105.

8 Gas Savings Findings

8.1 Remove unused variables in VotingEscrow._merge_positions()

Technical Details

In VotingEscrow._merge_positions() , two variables pt and to_pt are declared and
assigned but never used, resulting in unnecessary gas consumption.

Impact

Gas savings.

— 13 —

https://github.com/yield-basis/yb-core/commit/7192d1b8f7f7d303c3fd6fe39ae2358591ff995b
https://github.com/yield-basis/yb-core/commit/395d1db03e4a9aa892642022c794a7ef9c066105
https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/VotingEscrow.vy#L488

Yield Basis DAO Security Review

Recommendation

Remove the unused variables.

Developer Response

Fixed in cdf753d798f7bb8ca2f7c894ee50a54408878072.

9 Informational Findings

9.1 Follow CEI pattern

Some functions update the contract state after making an external call, violating the
Checks-Effects-Interactions (CEI) pattern.

Technical Details

VotingEscrow.withdraw() performs the state update
erc721._burn(convert(msg.sender, uint256)) before making the external call to
TOKEN.transfer() .
LiquidityGauge.deposit_reward() performs the state update
self.rewards[token] = r before making the external call to token.transferFrom() .

Impact

Informational.

Recommendation

Follow the CEI pattern as a best practice.

Developer Response

Fixed in 7c28c5b3cff00a71b5c598507b99ea4a8e16e389.

9.2 Fix typos

Technical Details

The CliffEscrow.vy contract contains a spelling error in an immutable variable name:

1 RECEPIENT: public(immutable(address))

— 14 —

https://github.com/yield-basis/yb-core/commit/cdf753d798f7bb8ca2f7c894ee50a54408878072
https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/VotingEscrow.vy#L330
https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/LiquidityGauge.vy#L260
https://github.com/yield-basis/yb-core/commit/7c28c5b3cff00a71b5c598507b99ea4a8e16e389

Yield Basis DAO Security Review

Impact

Informational.

Recommendation

Fix typos.

Developer Response

Fixed in d3dd301fe26e47cf575b844c4bd2a2c6efbc50b2.

9.3 VotingEscrow.getPastVotes() should not return future voting power

Technical Details

VotingEscrow.getPastVotes() allows querying voting power at any timestamp without
proper validation. However, the function’s purpose is to return voting power from the past only.

Impact

Informational.

Recommendation

Add proper timepoint validation check:

1 assert timepoint <= block.timestamp, "Timepoint in the future"

Developer Response

Acknowledged. It’s a view method which is to be called from frontend. Sometimes RPCs are
using multiple nodes behind a load balancer which could be not entirely at sync (one can be
ahead of another by 1 block). So, I can imagine a situation that check <= block.timestamp will
actually fail after reading the current timestamp worked. Moreover, this function will also work
in the near future. Overall, I think better leave it without this assert.

9.4 Check for array length mismatch

Technical Details

VestingEscrow.fund() accepts two arrays but only validates the loop bounds against the
recipients array.

— 15 —

https://github.com/yield-basis/yb-core/commit/d3dd301fe26e47cf575b844c4bd2a2c6efbc50b2
https://github.com/yield-basis/yb-core/blob/main/contracts/dao/VotingEscrow.vy#L378
https://github.com/yield-basis/yb-core/blob/f6104fc017a6022f0ad464bd8d5147850d1166f2/contracts/dao/VestingEscrow.vy#L85

Yield Basis DAO Security Review

Impact

Informational.

Recommendation

Add explicit length validation for better error messaging:
1 assert len(_recipients) == len(_amounts), "Array length mismatch"

Developer Response

Fixed in 926621b0e79d8f2c08d7f69f2d24e9b6f02447a7.

9.5 Missing exports from modules

There are several functions inherited from modules that are not re-exported from the contract.

Technical Details

• GaugeController.vy:
• owner()

• VestingEscrow.vy:
• owner()

• VotingEscrow.vy:
• tokenURI()

• supportsInterface()

Impact

Informational.

Recommendation

Add the missing exports to expose the functions.

Developer Response

Fixed in 199646175b42a081f049f1a26e3362c4fa878450.

10 Final Remarks

The DAO contracts of Yield Basis resemble much of the mechanism present in the Curve
protocol. While the structure is similar, multiple modifications have been made to simplify the
logic and its implementation.
Given the complexity of the contracts and the high number of severe findings present in this
report, the auditors recommend strengthening the testing suite and conducting a new security
review.

— 16 —

https://github.com/yield-basis/yb-core/commit/926621b0e79d8f2c08d7f69f2d24e9b6f02447a7
https://github.com/yield-basis/yb-core/commit/199646175b42a081f049f1a26e3362c4fa878450

	Review Summary
	Protocol Overview
	Audit Scope
	Risk Assessment Framework
	Severity Classification

	Key Findings
	Overall Assessment

	Audit Overview
	Project Information
	Audit Team
	Audit Resources
	Critical Findings
	NFT reentrancy allows using voting power when transferring the token
	Incorrect scale in codebgLiquidityGauge checkpoint
	User checkpoint in codebgLiquidityGauge fails to store rewards
	Incorrect interpretation of released rewards in codebgLiquidityGauge

	High Findings
	Incorrect emissions rate in YB token
	codebgVotingEscrow.increase_amount() has a parameter inconsistency that could lead to unauthorized lock modifications
	Token emission calculations use stale weights for non-checkpointed gauges
	Incorrect finish time calculation changes reward distribution rate instead of maintaining it

	Medium Findings
	codebgLiquidityGauge.withdraw() is broken due to incorrect codebgassert logic

	Low Findings
	Wrong condition in codebgpreview_emissions()
	Prevent LP token from being registered as rewards

	Gas Savings Findings
	Remove unused variables in codebgVotingEscrow._merge_positions()

	Informational Findings
	Follow CEI pattern
	Fix typos
	codebgVotingEscrow.getPastVotes() should not return future voting power
	Check for array length mismatch
	Missing exports from modules

	Final Remarks

