
Prepared for
Resupply Finance

Audited by
HHK
adriro

August 8, 2025

Resupply sreUSD
Smart Contract Security Assessment

Resupply sreUSD

Contents

Review Summary 2
1 Protocol Overview . 2
2 Audit Scope . 2
3 Risk Assessment Framework . 2

3.1 Severity Classification . 2
4 Key Findings . 2
5 Overall Assessment . 3

Audit Overview 3
1 Project Information . 3
2 Audit Team . 3
3 Audit Resources . 3
4 Critical Findings . 3
5 High Findings . 3
6 Medium Findings . 4

6.1 PriceWatcher weights can exceed the 1e6 scale 4
7 Low Findings . 5

7.1 Ensure _updateInterest = true when setting the new interest rate
contract in setRateCalculator() . 5

7.2 Incorrect split update implementation . 5
7.3 Preview sync rewards doesn’t account for fee distribution 6

8 Gas Savings Findings . 7
8.1 Return early inside previewDistributeRewards() 7

9 Informational Findings . 8
9.1 Ensure no distribution is triggered when deploying sreUSD 8

10 Final Remarks . 9

— 1 —

Resupply sreUSD

Review Summary

1 Protocol Overview

Resupply Finance is a CDP-based lending protocol that allows simple, low-risk, leveraged yield
farming while encouraging the use of value-added ecosystem protocols’ underlying stables like
Curve’s crvUSD and Frax’s FRAX.

2 Audit Scope

This audit covers 7 smart contracts totaling approximately 750 lines of code across 4.5 days of
review.

3 Risk Assessment Framework

3.1 Severity Classification

Severity Description Potential Impact
Critical Immediate threat to user funds or protocol

integrity
Direct loss of funds, protocol
compromise

High Significant security risk requiring urgent
attention

Potential fund loss, major
functionality disruption

Medium Important issue that should be addressed Limited fund risk, functional-
ity concerns

Low Minor issue with minimal impact Best practice violations, minor
inefficiencies

Undetermined Findings whose impact could not be fully
assessed within the time constraints of the
engagement. These issues may range from
low to critical severity, and although their
exact consequences remain uncertain, they
present a sufficient potential risk to war-
rant attention and remediation.

Varies based on actual severity

Gas Findings that can improve the gas effi-
ciency of the contracts.

Reduced transaction costs

Informational Code quality and best practice recommen-
dations

Improved maintainability and
readability

4 Key Findings

— 2 —

Resupply sreUSD

Breakdown of Finding Impacts

Impact Level Count

Critical 0

High 0

Medium 1

Low 3

Informational 1

Figure 1: Distribution of security findings by impact level

5 Overall Assessment

The update includes the new ERC-4626 vault for savings reUSD, along with changes to the
interest rate calculator to boost fees depending on the stable peg.

Audit Overview

1 Project Information

Protocol Name: Resupply Finance
Repository: https://github.com/resupplyfi/resupply
Commit Hash: 9a3de5b4a3ced4eb993c87cc19cf85c99bf3e6a2
Commit URL:
https://github.com/resupplyfi/resupply/commit/9a3de5b4a3ced4eb993c87cc19cf85c99bf3e6a2

2 Audit Team

HHK, adriro

3 Audit Resources

sreUSD Auditor Roadmap

4 Critical Findings

None.

5 High Findings

None.

— 3 —

https://hackmd.io/@wavey/Bkt8wkrLee

Resupply sreUSD

6 Medium Findings

6.1 PriceWatcher weights can exceed the 1e6 scale

Weights can potentially fall outside the expected scale, affecting the PriceWatcher consumers.

Technical Details

The implementation of getCurrentWeight() fetches the reUSD price from the Oracle and
adjusts the scale to return a value within 1e6 precision.

1 153: function getCurrentWeight() public view returns (uint64) {

2 154: uint256 price = IReusdOracle(oracle).price();

3 155: uint256 weight = price > 1e18 ? 0 : 1e18 - price;

4 156: //our oracle has a floor that matches redemption fee

5 157: //e.g. it returns a minimum price of 0.9900 when there is a 1% redemption

fee

6 158: //at this point a price of 0.99000 has a weight of 0.010000 or 1e16

7 159: //reduce precision to 1e6

8 160: return uint64(weight / 1e10);

9 161: }

The expected behavior here is that the Oracle price is clamped to $1 minus the redemption fee
(1%), making the resulting weight fall within the [0, 0.01] range, which is then scaled down
to the 1e6 region
However, two dependencies could potentially break this invariant.

• The ReusdOracle price() function multiplies the reUSD price (floored to the
redemption fee) by the crvUSD price, potentially allowing the resulting value to be less
than $0.99

• The redemption fee can be updated, breaking the floored price assumption.

Impact

Medium. Users of the PriceWatcher contract consume the weight as a rate while assuming the
returned scale is 1e6 , potentially causing downstream calculations to exceed 100%.

Recommendation

The weight calculation should use priceAsCrvusd() , which returns the floored price without
the crvUSD price scaling. Additionally, ensure that the redemption fee is not changed, as this
could also disrupt the calculations.

Developer Response

Fixed in 6eeae6b.

— 4 —

https://github.com/resupplyfi/resupply/blob/9a3de5b4a3ced4eb993c87cc19cf85c99bf3e6a2/src/protocol/PriceWatcher.sol#L153
https://github.com/resupplyfi/resupply/blob/9a3de5b4a3ced4eb993c87cc19cf85c99bf3e6a2/src/protocol/ReusdOracle.sol#L69
https://github.com/resupplyfi/resupply/commit/6eeae6b1bf722fec33bd704ad5a7a963500de93b

Resupply sreUSD

7 Low Findings

7.1 Ensure _updateInterest = true when setting the new interest rate contract in
setRateCalculator()

Technical Details

The function setRateCalculator() updates the contract used to calculate the interest rate.
When called, the param _updateInterest can be set to true to flush interests before
changing the contract.
The new contract InterestRateCalculatorV2 and PriceWatcher use the pair’s
lastPairUpdate variable to determine the new interest rate. This variable is only updated

when interests are flushed/added to the pair.
When the PriceWatcher is deployed, it will save two new priceData , one at timestamp
zero and one at the deployment timestamp’s floor.
If the lastPairUpdate is smaller than the deployment’s timestamp floor, the
findPairPriceWeight() function called by the InterestRateCalculatorV2 will loop
forever looking for a valid priceData all the way to timestamp zero, which will likely result in
the transaction reverting out of gas.

Impact

Low. The pair may not be able to determine their interests again until a new interest rate
contract is established.

Recommendation

Ensure that the param _updateInterest is set to true inside the deployment script when
calling setRateCalculator() (already the case inside LaunchSreUsd) and document this
in the natspec of the InterestRateCalculatorV2 contract.

Developer Response

Included in the draft governance proposal: LaunchSreUsd.s.sol#L126.

7.2 Incorrect split update implementation

The new staked reUSD split is not considered in the update logic of FeeDepositController.

Technical Details

The implementation of setSplits() takes all four split arguments but requires only three of
them to equal the total BPS.

— 5 —

https://github.com/resupplyfi/resupply/blob/9a3de5b4a3ced4eb993c87cc19cf85c99bf3e6a2/src/protocol/ResupplyPair.sol#L208C14-L208C31
https://github.com/resupplyfi/resupply/blob/9a3de5b4a3ced4eb993c87cc19cf85c99bf3e6a2/src/protocol/PriceWatcher.sol#L98-L98
https://github.com/resupplyfi/resupply/blob/9a3de5b4a3ced4eb993c87cc19cf85c99bf3e6a2/src/protocol/ResupplyPair.sol#L208C14-L208C31
https://github.com/resupplyfi/resupply/blob/965949da06a811c67daefb19770b721ffdac78ac/script/proposals/LaunchSreUsd.s.sol#L126
https://github.com/resupplyfi/resupply/blob/9a3de5b4a3ced4eb993c87cc19cf85c99bf3e6a2/src/protocol/FeeDepositController.sol#L181

Resupply sreUSD

1 181: function setSplits(uint256 _insuranceSplit, uint256 _treasurySplit, uint256

_platformSplit, uint256 _stakedStableSplit) external onlyOwner {

2 182: require(_insuranceSplit + _treasurySplit + _platformSplit == BPS, "invalid

splits");

3 183: splits.insurance = uint40(_insuranceSplit);

4 184: splits.treasury = uint40(_treasurySplit);

5 185: splits.platform = uint40(_platformSplit);

6 186: splits.stakedStable = uint40(_stakedStableSplit);

7 187: emit SplitsSet(uint40(_insuranceSplit), uint40(_treasurySplit), uint40(

_platformSplit), uint40(_stakedStableSplit));

8 188: }

Additionally, during initialization, the stakedStable variable is missing from the check on
line 62. However, in this case, the split can still be initialized properly and would overflow on
line 66 if the splits exceed 100%.

1 62: require(_insuranceSplit + _treasurySplit <= BPS, "invalid splits");

Impact

Low.

Recommendation

Change the condition in setSplits() to account for the new staked split.

1 - require(_insuranceSplit + _treasurySplit + _platformSplit == BPS, "invalid

splits");

2 + require(_insuranceSplit + _treasurySplit + _platformSplit +

_stakedStableSplit == BPS, "invalid splits");

The condition in the contract’s constructor can be adjusted as well.

1 - require(_insuranceSplit + _treasurySplit <= BPS, "invalid splits");

2 + require(_insuranceSplit + _treasurySplit + _stakedStableSplit <= BPS, "

invalid splits");

Alternatively, the platform split can be removed and interpreted as the difference between 100%
and the sum of the other three splits, aligning the behavior with the actual split implementation.

Developer Response

Fixed the summation check in 2f9510b.
We think it’s preferable to leave the struct as-is for the following reasons:

1. Explicitness.
2. Convenient for users or indexers to read from.

7.3 Preview sync rewards doesn’t account for fee distribution

The public-facing variant of previewSyncRewards() doesn’t account for fee distribution and
will return incorrect results.

— 6 —

https://github.com/resupplyfi/resupply/commit/2f9510ba76a69e9c9e150810bba703d65d397e51
https://github.com/resupplyfi/resupply/blob/9a3de5b4a3ced4eb993c87cc19cf85c99bf3e6a2/src/protocol/sreusd/LinearRewardsErc4626.sol#L128

Resupply sreUSD

Technical Details

The implementation of _syncRewards() has been updated so that _distributeFees() is
called before previewSyncRewards() but only if the current cycle has elapsed
(block.timestamp <= rewardsCycleData.cycleEnd).

1 157: function _syncRewards() internal virtual {

2 158: if (block.timestamp <= rewardsCycleData.cycleEnd) return;

3 159: _distributeFees();

4 160: RewardsCycleData memory _rewardsCycleData = previewSyncRewards();

This is necessary to ensure fees are incorporated into the contract and accounted for as rewards
in the upcoming cycle.
However, if previewSyncRewards() is called externally, the fee distribution isn’t executed,
and rewards are not accounted for in the preview simulation.

Impact

Low. previewSyncRewards() returns incorrect results.

Recommendation

The implementation should be refactored so that previewSyncRewards() simulates the
effects of fee distribution.

Developer Response

Fixed in 48d2b16.

8 Gas Savings Findings

8.1 Return early inside previewDistributeRewards()

Technical Details

Inside the function previewDistributeRewards() return early if
lastRewardsDistribution == block.timestamp .

This will save gas on deposits and withdrawals as the contract currently
_distributeRewards() first, which will update lastRewardsDistribution but then call
the function previewDistributeRewards() again inside totalAssets() to determine the
amount of shares to mint/burn.

Impact

Gas.

— 7 —

https://github.com/resupplyfi/resupply/blob/9a3de5b4a3ced4eb993c87cc19cf85c99bf3e6a2/src/protocol/sreusd/LinearRewardsErc4626.sol#L157
https://github.com/resupplyfi/resupply/commit/48d2b16d25ff790d374dabefb6dd359936b75710
https://github.com/resupplyfi/resupply/blob/9a3de5b4a3ced4eb993c87cc19cf85c99bf3e6a2/src/protocol/sreusd/LinearRewardsErc4626.sol#L94-L94

Resupply sreUSD

Recommendation

Inside the function previewDistributeRewards() , return early if
lastRewardsDistribution == block.timestamp .

Developer Response

Updated in b2139c2.

9 Informational Findings

9.1 Ensure no distribution is triggered when deploying sreUSD

The initialization of LinearRewardsErc4626 triggers a dummy distribution to bootstrap to the
state, which could create a conflict if actual rewards are being distributed.

Technical Details

The constructor of LinearRewardsErc4626 calls _syncRewards()

1 67: // initialize rewardsCycleEnd value

2 68: // NOTE: normally distribution of rewards should be done prior to

_syncRewards but in this case we know there are no users or rewards yet.

3 69: _syncRewards();

4 70:

5 71: // initialize lastRewardsDistribution value

6 72: _distributeRewards();

As the comment indicates, it is expected that no users or rewards are present at this point.
However, this may not be true if the call to _distributeFees() ends up doing an actual
distribution of tokens.

Impact

Informational.

Recommendation

Ensure no reward distribution happens as part of the initialization of the staked reUSD vault.

Developer Response

Added an extra sanity check in constructor: c41e8ae.

— 8 —

https://github.com/resupplyfi/resupply/commit/b2139c249ccd7c3f2b3c6f021f048aa2e3f0152c
https://github.com/resupplyfi/resupply/blob/9a3de5b4a3ced4eb993c87cc19cf85c99bf3e6a2/src/protocol/sreusd/LinearRewardsErc4626.sol#L52
https://github.com/resupplyfi/resupply/commit/c41e8aed2c3bd078caca8338baa60f3813048eb5

Resupply sreUSD

10 Final Remarks

The Resupply Protocol’s staked reUSD implementation represents a new extension to the
existing ecosystem, introducing a yield-bearing vault that leverages a reward distribution
mechanism based on collected fees from existing markets.
The audit revealed a well-structured implementation with no critical or high-severity
vulnerabilities identified. The medium-severity findings were primarily related to edge cases in
the PriceWatcher weight calculations, which could potentially affect downstream consumers but
do not pose immediate security risks to user funds.
The development team demonstrated exceptional responsiveness throughout the audit process,
promptly addressing all identified issues, reflecting their strong commitment to security and
code quality.

— 9 —

	Review Summary
	Protocol Overview
	Audit Scope
	Risk Assessment Framework
	Severity Classification

	Key Findings
	Overall Assessment

	Audit Overview
	Project Information
	Audit Team
	Audit Resources
	Critical Findings
	High Findings
	Medium Findings
	PriceWatcher weights can exceed the codebg1e6 scale

	Low Findings
	Ensure codebg_updateInterest = true when setting the new interest rate contract in codebgsetRateCalculator()
	Incorrect split update implementation
	Preview sync rewards doesn't account for fee distribution

	Gas Savings Findings
	Return early inside codebgpreviewDistributeRewards()

	Informational Findings
	Ensure no distribution is triggered when deploying sreUSD

	Final Remarks

