
Prepared for
Yield Basis

Audited by
Panda
HHK
Block 7 fellows

August 12, 2025

Yield Basis DAO
Update Security Review

Smart Contract Security Assessment

Yield Basis DAO Update Security Review

Contents

Review Summary 2
1 Protocol Overview . 2
2 Audit Scope . 2
3 Risk Assessment Framework . 2

3.1 Severity Classification . 2
4 Key Findings . 3
5 Overall Assessment . 3

Audit Overview 3
1 Project Information . 3
2 Audit Team . 3
3 Audit Resources . 3
4 Critical Findings . 5

4.1 Insufficient input validation allows anyone to steal other user’s voting
escrow position . 5

5 High Findings . 6
5.1 LiquidityGauge is prone to inflation attacks such as the first share deposit

one . 6
6 Medium Findings . 8

6.1 Infinite-Lock Merge will always revert . 8
6.2 UMAXTIME is not a multiple of 7 days . 9
6.3 Infinite locks won’t be able to vote for gauges 9
6.4 VotingEscrow _merge_positions Missing Checkpoint 10

7 Technical Details . 10
8 Low Findings . 11

8.1 Disabled user’s unvested tokens can’t be reallocated 11
8.2 Killed Gauges Continue to receive Emissions 11
8.3 VestingEscrow view functions incorrectly report vested amount for disabled

addresses . 12
8.4 CliffEscrow can’t use VotingEscrow infinite lock 13

9 Gas Savings Findings . 14
10 Informational Findings . 14

10.1 Transfer clearance checker should be enforced during deployment 14
10.2 Unused NewGaugeWeight Event in GaugeController 15
10.3 Missing Event for recover_token() in CliffEscrow 15
10.4 toggle_disable() function variables are named in the reversed order . 16
10.5 Spelling error in CliffEscrow.vy . 16
10.6 Incorrect comment in YB.sol ’s __init__() 17

— 1 —

Yield Basis DAO Update Security Review

Review Summary

1 Protocol Overview

Yield Basis is a protocol that features a new type of AMM that focuses on solving impermanent
loss. The current review targets the DAO contracts of the protocol, including the governance
token, along with the mechanism to vote, incentivize pools, and distribute rewards.

2 Audit Scope

This audit covers 6 smart contracts across 5 days of review.

contracts/dao

├── CliffEscrow.vy

├── GaugeController.vy

├── LiquidityGauge.vy

├── VestingEscrow.vy

├── VotingEscrow.vy

└── YB.vy

3 Risk Assessment Framework

3.1 Severity Classification

Severity Description Potential Impact
Critical Immediate threat to user funds or protocol

integrity
Direct loss of funds, protocol
compromise

High Significant security risk requiring urgent
attention

Potential fund loss, major
functionality disruption

Medium Important issue that should be addressed Limited fund risk, functional-
ity concerns

Low Minor issue with minimal impact Best practice violations, minor
inefficiencies

Undetermined Findings whose impact could not be fully
assessed within the time constraints of the
engagement. These issues may range from
low to critical severity, and although their
exact consequences remain uncertain, they
present a sufficient potential risk to war-
rant attention and remediation.

Varies based on actual severity

Gas Findings that can improve the gas effi-
ciency of the contracts.

Reduced transaction costs

Informational Code quality and best practice recommen-
dations

Improved maintainability and
readability

— 2 —

Yield Basis DAO Update Security Review

4 Key Findings

Breakdown of Finding Impacts

Impact Level Count

Critical 1

High 1

Medium 4

Low 4

Informational 6

Figure 1: Distribution of security findings by impact level

5 Overall Assessment

Audit Overview

1 Project Information

Protocol Name: Yield Basis
Repository: https://github.com/yield-basis/yb-core/
Commit Hash: 74dcb46765081ef5170aa0cffcb8925f98cf84b6
Commit URL:
https://github.com/yield-basis/yb-core/commit/74dcb46765081ef5170aa0cffcb8925f98cf84b6

2 Audit Team

Panda, HHK, Block 7 fellows

3 Audit Resources

Code repositories and documentation

— 3 —

Yield Basis DAO Update Security Review

Category Mark Description

Access Control Low Critical vulnerability in VotingEscrow transfer func-
tions allows position theft due to insufficient input
validation.

Mathematics Average ERC4626 inflation attack vulnerability in Liquidity-
Gauge, slope change accounting issues in position
merging.

Complexity Average Complex interactions between multiple DAO con-
tracts with various edge cases. Infinite lock mechan-
ics, gauge weight adjustments, and position merging
introduce significant complexity that led to several
vulnerabilities.

Libraries Good Proper use of established libraries like snekmate for
ERC20/ERC721 functionality. Clean separation of
concerns with library usage.

Decentralization Good Well-structured DAO implementation with voting
mechanisms, gauge controllers, and reward distribu-
tion. Users maintain control over their positions and
voting power.

Code Stability Average Several stability issues, including merge reverts for
infinite locks, transfer restrictions due to time calcu-
lations.

Documentation Good Code is well-documented with clear function purposes
and parameter descriptions. Contract interfaces are
properly defined.

Monitoring Good Adequate event emissions for most operations.

Testing and
verification

Average Various edge cases and attack vectors discovered dur-
ing audit suggest test coverage could be improved,
particularly around infinite lock scenarios and mathe-
matical edge cases.

Table 1: Code Evaluation Matrix

— 4 —

Yield Basis DAO Update Security Review

4 Critical Findings

4.1 Insufficient input validation allows anyone to steal other user’s voting escrow position

Attacker can sacrifice his own NFT and steal other user’s position due to a missing check in
VotingEscrow.transferFrom() and VotingEscrow.safeTransferFrom() .

Technical Details

VotingEscrow.create_lock() mints user an NFT, the token_id is uint256 format of
user_address : user address is soulbound to user NFT id.
Inside the transfers functions the contract uses
erc721._is_approved_or_owner(msg.sender, token_id) for ownership check. The check
verifies if msg.sender is the owner of token_id , or if msg.sender has sufficient allowance
for token_id . But there is no check to verify token_id == uint256 format of owner .
Say max lock time is reached, and attacker calls
transferFrom(victim_address, attacker_address, attacker_token_id) . The first
check will pass because attacker owns attacker_token_id . The second check will pass
because max lock time is reached. The internal function
self._merge_positions(owner, to) is then executed, victim’s position is merged with
attacker’s. Then erc721._burn(token_id) burns attacker’s NFT. In short, attacker can
sacrifice his own NFT and steal victim’s position. If attacker’s position is tiny compared to
victim’s position, this attack lets him sacrifice something small and grief something big.
To amplify the impact, consider this intricately designed attack:

1. Attack prepares two wallets A and B, mints NFT for each (call them NFT A and NFT B)
2. Wallets B approves wallet A max allowance (to bypass the snekmate

erc721._is_approved_or_owner check)
3. Attacker calls

transferFrom(victim_address, wallet_A_address, NFT_B_token_id)

4. Victim’s position is merged to wallet A’s position
5. NFT B is burned but attacker can still withdraw all the asset via NFT A.

Impact

Attacker can steal any user’s position.

Recommendation

Add validation to ensure the token_id corresponds to the owner parameter in both functions:

1 @external

2 @payable

3 def transferFrom(owner: address, to: address, token_id: uint256):

4 assert token_id == convert(owner, uint256), "token_id must match owner" # ← ADD

THIS

5 assert erc721._is_approved_or_owner(msg.sender, token_id), "erc721: caller is not

token owner or approved"

6 assert self._ve_transfer_allowed(owner, to), "Need max veLock"

7 self._merge_positions(owner, to)

— 5 —

https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VotingEscrow.vy#L566-L566
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VotingEscrow.vy#L575-L575
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VotingEscrow.vy#L282-L282
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VotingEscrow.vy#L530-L530

Yield Basis DAO Update Security Review

8 erc721._burn(token_id)

10 @external

11 @payable

12 def safeTransferFrom(owner: address, to: address, token_id: uint256, data: Bytes[1_024]

= b""):

13 assert token_id == convert(owner, uint256), "token_id must match owner" # ← ADD

THIS

14 assert erc721._is_approved_or_owner(msg.sender, token_id), "erc721: caller is not

token owner or approved"

15 assert self._ve_transfer_allowed(owner, to), "Need max veLock"

16 self._merge_positions(owner, to)

17 erc721._burn(token_id)

Developer Response

Fixed in 3af52777ac4a199a8e1b97f6a557ea06ab642a0d.

5 High Findings

5.1 LiquidityGauge is prone to inflation attacks such as the first share deposit one

The LiquidityGauge contract is vulnerable to an ERC4626 inflation attack that allows
malicious actors to manipulate the share price and steal funds from subsequent depositors. The
vulnerability stems from the contract’s reliance on asset.balanceOf(self) for calculating
total assets, which can be artificially inflated through direct token transfers.

Technical Details

The LiquidityGauge contract inherits the default _preview_deposit and
_preview_redeem implementations from erc4626.vy , which depend on _total_assets() .
This function simply returns the current balance of the asset token held by the contract
(asset.balanceOf(self)). This design is problematic because it can be manipulated by an
attacker transferring tokens directly to the contract outside of the intended deposit flow.

• The LiquidityGauge inherits _preview_deposit and _preview_redeem from
erc4626.vy , both of which rely on _total_assets()

• _total_assets() calls asset.balanceOf(self) , returning the total token balance
of the contract

• Direct transfers to the contract (outside the intended deposit flow) inflate totalAssets ,
skewing the share minting calculation

• The ERC4626 share calculation formula
shares = assets * totalSupply / totalAssets becomes vulnerable when
totalAssets is artificially inflated

Proof of Concept
A malicious actor can exploit this vulnerability through the following steps:

1. Initial Setup: Transfer a large amount of tokens directly to the contract (bypassing the
deposit function)

— 6 —

https://github.com/yield-basis/yb-core/commit/3af52777ac4a199a8e1b97f6a557ea06ab642a0d

Yield Basis DAO Update Security Review

2. Minimal Deposit: Make a small deposit (e.g., 1 wei) to mint exactly 1 share
3. Price Manipulation: The inflated totalAssets value causes the share price to become

extremely high
4. Victim Impact: Subsequent deposits from legitimate users mint zero shares due to

rounding down in the share calculation
5. Profit Extraction: The attacker can later redeem their single share for a disproportionate

amount of the total assets

1 def test_inflation_attack(gauge_and_lp_token):

2 gauge, lp_token, reward_token, YB_token, gauge_controller = gauge_and_lp_token

4 # Attacker (USER2) performs inflation attack

5 with boa.env.prank(USER2):

6 gauge = boa.load("contracts/dao/LiquidityGauge.vy", lp_token.address, YB_token,

ADMIN, gauge_controller)

7 # Step 1: Transfer tokens directly to inflate totalAssets

8 lp_token.transfer(gauge.address, 2500 * 10**18)

10 with boa.env.prank(USER2):

11 lp_token.approve(gauge.address, 5000 * 10**18)

12 # Step 2: Deposit minimal amount to mint 1 share

13 gauge.deposit(2500*10**18+1, USER2)

14 print("Attacker shares:", gauge.balanceOf(USER2))

16 # Victim (USER) attempts to deposit

17 with boa.env.prank(USER):

18 lp_token.approve(gauge.address, 10000 * 10**18)

19 # Multiple deposits that mint zero shares due to inflated price

20 gauge.deposit(2000*10**18, USER)

21 gauge.deposit(2000*10**18, USER)

22 gauge.deposit(2000*10**18, USER)

23 gauge.deposit(2000*10**18, USER)

24 gauge.deposit(2000*10**18, USER)

25 print("Victim shares:", gauge.balanceOf(USER))

27 # Attacker redeems their single share

28 with boa.env.prank(USER2):

29 gauge.redeem(1, USER2, USER2)

30 print("Attacker LP tokens balance:", lp_token.balanceOf(USER2))

31 print("Victim LP tokens balance:", lp_token.balanceOf(USER))

32 print("LP tokens stuck in gauge:", lp_token.balanceOf(gauge.address))

Expected Output:

Attacker shares: 1

Victim shares: 0

Attacker LP tokens balance: 12500000000000000000000

Victim LP tokens balance: 0

LP tokens stuck in gauge: 7500000000000000000000

Impact

Malicious users can manipulate the share price to steal funds from legitimate depositors.
Victims’ deposits mint zero shares, locking their funds with no claim on withdrawals. While
attackers cannot fully drain the contract due to the totalSupply + 1 denominator
protection, they can still achieve significant profits by frontrunning deposits.

— 7 —

Yield Basis DAO Update Security Review

Recommendation

Implement a protected balance mechanism that maintains separate accounting for total
deposited assets or mint dead shares and pre-deposit in the vault at deployment time.

Developer Response

Fixed in : c0d12d65ec3121e3505053f0675ba0370d3087d9

6 Medium Findings

6.1 Infinite-Lock Merge will always revert

Attempting to merge two “infinite” ve-NFT locks via transferFrom() or
safeTransferFrom() will always reverts due to an out-of-range signed cast, making the core
“infinite-lock transfer” feature unusable.

Technical Details

After calling infinite_lock_toggle() , the user lock’s end is set to max_value(uint256) .
Users can merge locks together by transferring them to another user, by calling
transferFrom() or safeTransferFrom() .
Inside the internal function _merge_positions() the logic is as follow:

1 slope = new_locked.amount // MAXTIME

2 bias = slope * convert(new_locked.end - block.timestamp, int256)

This is an issue for infinite locks, since it will result in new_locked.end - now � 2²��−1,
which exceeds the signed-256 range (±2²��−1). And since convert(uint256, int256) is
range-checked, this always reverts.

Impact

Medium. Users cannot transfer or merge permanent locks. This core feature is non-functional.

Recommendation

Introduce a special-case before the cast to handle infinite locks explicitly. Something of the
below order.

1 def _merge_positions(owner: address, to: address):

2 ...

3 new_locked.amount += locked.amount

4 self.locked[to] = new_locked

6 if new_locked.end == max_value(uint256):

7 # Special-case infinite lock: no decay

8 slope = 0

9 bias = convert(new_locked.amount, int256)

10 else:

11 slope = new_locked.amount // MAXTIME

— 8 —

https://github.com/yield-basis/yb-core/commit/c0d12d65ec3121e3505053f0675ba0370d3087d9
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VotingEscrow.vy#L566-L566
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VotingEscrow.vy#L575-L575
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VotingEscrow.vy#L338-L338
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VotingEscrow.vy#L566-L566
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VotingEscrow.vy#L575-L575
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VotingEscrow.vy#L530-L530

Yield Basis DAO Update Security Review

12 bias = slope * convert(new_locked.end - block.timestamp, int256)

13 ...

This restores the intended “merge two infinite locks” functionality without causing an overflow
revert.

Developer Response

Fixed in 6a7b17e2b5bf50f9378a21748831b35c956afc0a

6.2 UMAXTIME is not a multiple of 7 days

Technical Details

The constant UMAXTIME is widely used throughout the code to represent the maximum possible
lock duration. It is currently set to 4 * 365 days. However, this duration leaves a remainder of 4
days when divided by 7, which is suboptimal since lock end times are aligned to 7-day intervals.
As a result, in the _ve_transfer_allowed() function, a user’s lock is unlikely to exactly
match max_time . Consequently, the conditions
owner_time // WEEK * WEEK == max_time and
to_time // WEEK * WEEK == max_time will evaluate to false, preventing transfers from
being allowed.

Impact

Medium. Users will not be able to max lock and transfer their NFTs

Recommendation

Set UMAXTIME to a multiple of 7 days, such as UMAXTIME = 4 * 52 * 7 days which would
by 4 years minus 4 days.

Developer Response

This is partially expected, the lock should always be less, however fixed the
_ve_transfer_allowed() check in 7215a47023e025a3941b29c6af5c844653bcc673.

6.3 Infinite locks won’t be able to vote for gauges

The vote_for_gauge_weights() function uses slope to determine voting power which will
be 0 for infinite locks.

Technical Details

When a user calls infinite_lock_toggle() it saves a checkpoint and sets the slope to 0.
Later on when a user tries to vote for a gauge on the gauge controller by calling
vote_for_gauge_weights() it will result in no power added to that gauge as the slope for
the infinite lock is 0.

— 9 —

https://github.com/yield-basis/yb-core/commit/6a7b17e2b5bf50f9378a21748831b35c956afc0a
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VotingEscrow.vy#L507-L507
https://github.com/yield-basis/yb-core/commit/7215a47023e025a3941b29c6af5c844653bcc673
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/GaugeController.vy#L211-L211
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VotingEscrow.vy#L338-L338
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/GaugeController.vy#L211-L211

Yield Basis DAO Update Security Review

Impact

Medium. Users with infinite locks won’t be able to vote, they can still toggle off the infinite lock
to bypass the issue.

Recommendation

Modify the gauge voting to take into account infinite locks.

Developer Response

Fixed in: f46a125604c6f16d3522ddd4a40969dbfd3ff8e6

6.4 VotingEscrow _merge_positions Missing Checkpoint

The _merge_positions function in VotingEscrow bypasses the proper _checkpoint()

mechanism, leading to incorrect slope change accounting. This results in permanent corruption
of the global voting weight decay timeline and miscalculated voting weights for future periods.

7 Technical Details

The _merge_positions function bypasses proper slope change accounting by directly
updating user_point_history instead of calling _checkpoint() for each user. When
positions are merged, the function:

1. Directly sets
self.user_point_history[owner][user_epoch] = Point(bias=0, slope=0, ts=block.timestamp)

2. Directly sets
self.user_point_history[to][user_epoch] = Point(bias=slope * convert(new_locked.end - block.timestamp, int256), slope=slope, ts=block.timestamp)

This bypasses the slope_changes tracking logic in _checkpoint() that properly schedules
slope decreases at lock expiration times. The missing logic includes: - Removing old slope
changes: old_dslope += u_old.slope and
self.slope_changes[old_locked.end] = old_dslope - Adding new slope changes:
new_dslope -= u_new.slope and
self.slope_changes[new_locked.end] = new_dslope

Impact

Medium. The global voting weight decay timeline becomes corrupted.

Recommendation

Only allow merging to locks with similar duration.

— 10 —

https://github.com/yield-basis/yb-core/commit/f46a125604c6f16d3522ddd4a40969dbfd3ff8e6

Yield Basis DAO Update Security Review

Developer Response

Fixed in: 6a7b17e2b5bf50f9378a21748831b35c956afc0a

8 Low Findings

8.1 Disabled user’s unvested tokens can’t be reallocated

Technical Details

In VestingEscrow, when the owner disables a recipient during the vesting period, the unvested
tokens allocated to that recipient become permanently locked in the contract.
When tokens are funded to a recipient via fund() , the unallocated_supply is decreased by
the full allocation amount. If a recipient is later disabled, they can only claim tokens that have
already vested. The remaining unvested tokens cannot be reallocated to other recipients
because unallocated_supply was already reduced to account for the full original allocation,
these unvested tokens become permanently inaccessible.

Impact

Low. Unvested tokens allocated to disabled recipients become permanently locked in the
contract, preventing their reallocation to other recipients.

Recommendation

Add a function to reclaim unvested tokens from disabled recipients and withdraw them or
return them to the unallocated_supply for reallocation.

Developer Response

8.2 Killed Gauges Continue to receive Emissions

Technical Details

The set_killed() function marks a gauge address in is_killed[gauge] = true .
The only place this is_killed[gauge] flag is consulted is in vote_for_gauge_weights() ,
preventing new votes on a killed gauge.
_checkpoint_gauge() , the sole place where fresh YB are minted and a gauge’s weight is
refreshed, never reads that flag. The first assert doesn’t guard against the killed ones so the
function proceeds for killed gauges exactly as for live ones.
Likewise, emit which is the public entry-point gauges use to pull their share, also omits any kill
check. It calls _checkpoint_gauge(msg.sender) and pays out whatever weight the
controller calculated.
Consequently, killed gauges continue to accrue emissions and allow users to claim tokens,
bypassing the kill mechanism entirely.

— 11 —

https://github.com/yield-basis/yb-core/commit/6a7b17e2b5bf50f9378a21748831b35c956afc0a
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VestingEscrow.vy#L86-L86
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/GaugeController.vy#L350-L350
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/GaugeController.vy#L211-L211
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/GaugeController.vy#L156-L156

Yield Basis DAO Update Security Review

Impact

Low. Killed gauges continue to draw from the inflation reserve for the full lifespan of any
residual vote weight, diluting live gauges and miss-allocating YB.
If a malicious user or bribed voters pushes significant weight just before an admin kill, that
gauge continues to receive emissions for months despite it being deprecated.

Recommendation

Guard Emissions in _checkpoint_gauge() . Before any emission logic add
assert not self.is_killed[gauge], "Gauge is killed"

Prevent claims on killed Gauges. In emit() , likewise add extra validation
assert not self.is_killed[msg.sender], "Gauge is killed"

Alternatively, in set_killed() immediately zero out that gauge’s weight (and adjust the
global sums) so even if any existing guard is bypassed, the killed gauge has no residual bias left
to harvest.

Developer Response

Acknowledged, this is by design to be able to reverse the killing. Same logic is present in Curve.

8.3 VestingEscrow view functions incorrectly report vested amount for disabled addresses

The _total_vested_of function in VestingEscrow.vy does not account for the
disabled_at timestamp, causing view functions like vestedOf , balanceOf , and
lockedOf to return incorrect values for disabled addresses.

Technical Details

The VestingEscrow contract includes a disable mechanism where the admin can call
toggle_disable(_recipient) to prevent an address from claiming tokens that have not yet
vested at the time of disabling. This is implemented using the disabled_at mapping:

1 @external

2 def toggle_disable(_recipient: address):

3 # ...

4 is_disabled: bool = self.disabled_at[_recipient] == 0

5 if is_disabled:

6 self.disabled_at[_recipient] = block.timestamp # Set disable timestamp

7 else:

8 self.disabled_at[_recipient] = 0 # Re-enable

The claim function correctly handles this by using the disabled_at timestamp when
calculating vested amounts:

1 @external

2 def claim(addr: address = msg.sender):

3 t: uint256 = self.disabled_at[addr]

4 if t == 0:

5 t = block.timestamp

— 12 —

Yield Basis DAO Update Security Review

6 claimable: uint256 = self._total_vested_of(addr, t) - self.total_claimed[addr]

7 # ...

owever, the view functions vestedOf , balanceOf , and lockedOf all call
_total_vested_of with the default block.timestamp parameter, ignoring the
disabled_at state:

1 @external

2 @view

3 def vestedOf(_recipient: address) -> uint256:

4 return self._total_vested_of(_recipient) # Uses block.timestamp by default

6 @external

7 @view

8 def balanceOf(_recipient: address) -> uint256:

9 return self._total_vested_of(_recipient) - self.total_claimed[_recipient] # Uses

block.timestamp by default

11 @external

12 @view

13 def lockedOf(_recipient: address) -> uint256:

14 return self.initial_locked[_recipient] - self._total_vested_of(_recipient) # Uses

block.timestamp by default

Impact

Low. This inconsistency leads to misleading information for disabled addresses.

Recommendation

Modify the view functions to account for the disabled_at timestamp when calculating vested
amounts. The fix should ensure consistency with the claim function’s behavior.

Developer Response

Fixed at: f563fb5

8.4 CliffEscrow can’t use VotingEscrow infinite lock

Technical Details

VotingEscrow implements an infinite_lock_toggle() function that allows users to
create or cancel ever-extending locks by setting the lock end time to max_value(uint256) .
However, CliffEscrow only exposes a subset of VotingEscrow methods (create_lock ,
increase_amount , increase_unlock_time , withdraw , and transferFrom) but does
not include infinite_lock_toggle() in its interface or implementation.
The missing method prevents users who interact with VotingEscrow through CliffEscrow

from accessing this functionality.

— 13 —

https://github.com/yield-basis/yb-core/commit/f563fb5b9da8846cd2c6b920a9ad27ec8dbc8001

Yield Basis DAO Update Security Review

Impact

Low. Users interacting with VotingEscrow through CliffEscrow cannot benefit from the
infinite lock feature.

Recommendation

Add the infinite_lock_toggle() method to CliffEscrow .

1 @external

2 def infinite_lock_toggle():

3 self._access()

4 extcall VE.infinite_lock_toggle()

Developer Response

Fixed in 4378752a0bb17169648a8711598a18372a93de7f.

9 Gas Savings Findings

None.

10 Informational Findings

10.1 Transfer clearance checker should be enforced during deployment

The VotingEscrow contract allows veNFT transfers only when both sender and receiver hold
max-duration locks and the sender has zero active votes. However, the zero-vote validation
relies on an optional external checker that may not be set during deployment.

Technical Details

The _ve_transfer_allowed() function delegates zero-vote validation to an external
TransferClearanceChecker :
When transfer_clearance_checker is unset (zero address), the zero-vote check is silently
skipped, and only the max-lock condition is enforced.

Impact

Informational. If the deployer forgets to set the transfer clearance checker, the intended
zero-vote requirement for transfers will not be enforced, potentially allowing transfers with
active votes.

— 14 —

https://github.com/yield-basis/yb-core/commit/4378752a0bb17169648a8711598a18372a93de7f
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VotingEscrow.vy#L507-L507

Yield Basis DAO Update Security Review

Recommendation

Consider requiring the transfer clearance checker to be set during deployment to ensure the
intended transfer restrictions are always enforced. This can be done by:

• Adding the checker address as a constructor parameter
• Adding a check to ensure the checker is set before allowing transfers
• Or implementing the zero-vote validation directly in the contract rather than delegating

to an external checker

Developer Response

Fixed in 2be7c58453159370c70dab6199250ddfe0b08a17.

10.2 Unused NewGaugeWeight Event in GaugeController

Technical Details

GaugeController defines a NewGaugeWeight event but never emits it. Neither
_checkpoint_gauge() nor vote_for_gauge_weights() ever logs NewGaugeWeight .
Observers cannot reconstruct historic weight adjustments except via indirect state reads.

Impact

Emit the logs to ensure greater on-chain transparency.

Recommendation

Emit NewGaugeWeight after the gauge weights are updated.

Developer Response

Removed the event. Fixed in 37f008a2edcea23b264fe5301ed9c370754740b0.

10.3 Missing Event for recover_token() in CliffEscrow

Technical Details

The recover_token() function in CliffEscrow allows the designated RECIPIENT to sweep
any ERC-20 (except YB) out of the contract, but it emits no event to record this action. As a
result, any token recovery is completely invisible on-chain.

Impact

Informational. Missing on-chain evidence makes it impossible for off-chain watchers or block
explorers to detect token sweeps.

— 15 —

https://github.com/yield-basis/yb-core/commit/2be7c58453159370c70dab6199250ddfe0b08a17
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/GaugeController.vy#L156-L156
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/GaugeController.vy#L211-L211
https://github.com/yield-basis/yb-core/commit/37f008a2edcea23b264fe5301ed9c370754740b0
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/CliffEscrow.vy#L103-L103

Yield Basis DAO Update Security Review

Recommendation

Emit an event indicating token recoveries
log TokenRecovered(token=token.address, to=to, amount=amount) .

Developer Response

Fixed in cf785ae276f308ba66e40fee8dc3da7bc97dff6c.

10.4 toggle_disable() function variables are named in the reversed order

Technical Details

Inside toggle_disable() when the address is disabled from claiming, is_disabled should
be true; and in the reverse scenario (address enabled to claim), is_disabled should be
false . As of now, is_disabled holds the boolean value for the currently ”not disabled”
address as true instead of false.
This does not impact the function to toggle, but the state described by the variable is the
opposite of what it truly is.

Impact

Informational: Improve code readability and monitoring via event emissions.

Recommendation

Rename is_disabled to currently_enabled OR flip the booleans stored.

Developer Response

Fixed in 3b0dc8871f58d5d31aec09120a0208557b7294a3.

10.5 Spelling error in CliffEscrow.vy

Technical Details

The Cliff Escrow contract contains a spelling error in the init parameter declaration.

@deploy

def __init__(token: IERC20, unlock_time: uint256, ve: VotingEscrow, gc: GaugeController, recepient: address):

RECIPIENT = recepient

YB = token

VE = ve

GC = gc

assert unlock_time > block.timestamp

UNLOCK_TIME = unlock_time

extcall token.approve(ve.address, max_value(uint256))

— 16 —

https://github.com/yield-basis/yb-core/commit/cf785ae276f308ba66e40fee8dc3da7bc97dff6c
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/VestingEscrow.vy#L110-L110
https://github.com/yield-basis/yb-core/commit/3b0dc8871f58d5d31aec09120a0208557b7294a3

Yield Basis DAO Update Security Review

Incorrect spelling: recepient Correct spelling: recipient

Impact

Informational.

Recommendation

Rename the parameter.

Developer Response

Fixed.

10.6 Incorrect comment in YB.sol ’s __init__()

Technical Details

Inside __init__() there is a comment:

* set_minter(deployer, False)

Which may not work as set_minter() has a check
assert minter != msg.sender, "erc20: minter is owner address" which will make
that call revert.

Impact

Informational.

Recommendation

Remove this comment and the line from the potential deploy script.

Developer Response

Fixed in 2cd7c1b51fbebee771a521307838f978a87e68fe.

— 17 —

https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/contracts/dao/YB.vy#L34-L34
https://github.com/yield-basis/yb-core/blob/74dcb46765081ef5170aa0cffcb8925f98cf84b6/venv/lib/python3.13/site-packages/snekmate/tokens/erc20.vy#L345-L345
https://github.com/yield-basis/yb-core/commit/2cd7c1b51fbebee771a521307838f978a87e68fe

	Review Summary
	Protocol Overview
	Audit Scope
	Risk Assessment Framework
	Severity Classification

	Key Findings
	Overall Assessment

	Audit Overview
	Project Information
	Audit Team
	Audit Resources
	Critical Findings
	Insufficient input validation allows anyone to steal other user's voting escrow position

	High Findings
	LiquidityGauge is prone to inflation attacks such as the first share deposit one

	Medium Findings
	Infinite-Lock Merge will always revert
	codebgUMAXTIME is not a multiple of 7 days
	Infinite locks won't be able to vote for gauges
	VotingEscrow codebg_merge_positions Missing Checkpoint

	Technical Details
	Low Findings
	Disabled user's unvested tokens can't be reallocated
	Killed Gauges Continue to receive Emissions
	VestingEscrow view functions incorrectly report vested amount for disabled addresses
	codebgCliffEscrow can't use codebgVotingEscrow infinite lock

	Gas Savings Findings
	Informational Findings
	Transfer clearance checker should be enforced during deployment
	Unused codebgNewGaugeWeight Event in codebgGaugeController
	Missing Event for codebgrecover_token() in CliffEscrow
	codebgtoggle_disable() function variables are named in the reversed order
	Spelling error in codebgCliffEscrow.vy
	Incorrect comment in codebgYB.sol's codebg__init__()

