Prepared for:
Audit Period:

July 12, 2025

Centrifuge

June 16 to Jine iRt

Audit Performed By

HHK, adriro, Electisec Block 7 fellows

Review Resources

Protocol documentation, slides describing the scope in detail.

Commit Hash

57b6ed25c861664307f0ce283e0fc8cb6b2b83111

DISCLAIMER

This review is a code review to identify potential vulnerabilities in the code. The reviewers did
not investigate security practices or operational security and assumed that privileged accounts
could be trusted. The reviewers did not evaluate the security of the code relative to a standard
or specification. The review may not have identified all potential attack vectors or areas of
vulnerability.

Electisec and the auditors make no warranties regarding the security of the code and do not
warrant that the code is free from defects. Electisec and the auditors do not represent nor imply
to third parties that the code has been audited nor that the code is free from defects. By
deploying or using the code, Centrifuge and users of the contracts agree to use the code at their
own risk.

Electisec Centrifuge V3 Review

Contents

Centrifuge V3 Review 3
1 Review Summary 4
2 SCOPE . . e 4
3 Findings Explanation L oo 5
4 Critical Findings e 5
5 High Findings o . o)
5.1 Shares are transferred twice during the request to redeem for legacy vaults 5
6 Medium Findings oL Lo 6
6.1 Zero deposits into the balanceSheet will block future snapshots 6
7 Low Findings L 8
7.1 Transfer restriction could cause losses when redemptions are fulfilled . . . 8

7.2 The AsyncRequestManager: :max* view functions will return incorrect
values if the share token implements amount-based restrictions 9
8 Gas Saving Findings 10
8.1 Cache storage variable o 11
8.2 Avoid asset self-transfer in VaultRouter 12
8.3 Simplify manager lookup in AsyncVault 12
8.4 Duplicate limit checks for maxMint and maxWithdraw 13
8.5 Redundant shareQueue.isPositive assignments in BalanceSheet operations 13
9 Informational Findings Lo 14
9.1 Inconsistent Vault Validation Between Router Functions 14
9.2 OnOfframpManager should raise if the update kind is not supported . . . 15
9.3 Validate that entities are registered in the Spoke contract 15
9.4 Apply CEI in BalanceSheet 16
9.5 Incorrect argument in RedeemRequest event 16
9.6 Incorrect argument in CancelRedeemClaim event 17

9.7 Events part of executions initiated in the LegacyVaultAdapter are emitted
in the legacy vault Lo oo 17
9.8 onRedeemRequest() ismevercalled. 18
9.9 ShareClassld Validation Bypass in OnOfframpManager Cross-Chain Updates 18
9.10 Incorrect NatSpec on isValid() misrepresents validation logic 20

9.11 OnOfframpManagerFactory.newManager() allows creation of OnOfframp-
Manager contracts with an arbitrary pair of (poolld, shareClassld) 21

9.12 Share and asset queue drift in BalanceSheet due to incorrect signed-
emulation logic 22
10 Final Remarks e 24

Electisec

Centrifuge V3 Review

Category

Mark

Description

Access Control

Mathematics

Complexity

Libraries

Decentralization

Code stability

Documentation

Monitoring

Testing and
verification

Average

Good

Average

Good

Low

Good

Good

Good

Average

Given the shallow authentication system, it is chal-
lenging to determine who has access to each system
function.

The reviewed contracts present correctly implemented
mathematical relations.

Despite its modularity and good design, Centrifuge is
a big protocol with complex asynchronous flows that
can even span multiple chains.

There are no explicit external dependencies. Some
libraries are derived from or inspired by other proto-
cols, such as Maker DAO or Uniswap.

As the protocol deals with real-world assets, most
of its functionality is permissioned, and tokens have
transfer restrictions.

The codebase remained stable during the engagement.

The contracts are well-documented with clear com-
ments and good NatSpec coverage. Detailed high-level
documentation was provided to the auditors to help
them understand the architecture and the general
context surrounding the vaults.

Monitoring mechanisms are in place to track key
events and changes within the system.

The codebase features a rich testing suite. However,
the legacy adapter wasn’t covered. The protocol team
stated that this functionality is still under discussion
and will be released eventually after V3 is deployed.

Table 1: Code Evaluation Matrix

Centrifuge V3 Review

Review Resources:

e Protocol Documentation
o Slides describing the scope in detail

Auditors:

« HHK
e adriro

e Electisec Block 7 fellows

https://docs.centrifuge.io/
https://electisec.com/fellowships

Electisec Centrifuge V3 Review

1 Review Summary

Centrifuge

Centrifuge V3 is an open, decentralized protocol for on-chain asset management. Built on
immutable smart contracts, it enables permissionless deployment of customizable tokenization
products.

The contracts of the Centrifuge repository were reviewed over a period of 10 days. Two auditors
performed the code review between June 16 and June 27, 2025. Fellows from Electisec Block 7
additionally joined the review. The repository was under active development during the
engagement, but the review was limited to the latest commit:
57b6ed25c861664307f0ce283e0fc8cb6b2b83111 .

2 Scope

The scope of the review consisted of the following contracts at the specific commit:

src/spoke
| -- BalanceSheet.sol

| -- ShareToken.sol

| -- Spoke.sol

| -- factories

| *-- TokenFactory.sol
| -- libraries

AN

-- UpdateContractMessagelLib.sol
-- types
“-- Price.sol
src/vaults
| -- AsyncRequestManager.sol
| -- AsyncVault.sol
| -- BaseVaults.sol
-- SyncDepositVault.sol
--
--

N

SyncManager.sol

VaultRouter.sol

factories

| -- AsyncVaultFactory.sol

"-- SyncDepositVaultFactory.sol
-- legacy

"-- LegacyVaultAdapter.sol
src/managers/
" -- 0OnOfframpManager.sol

N

After the findings were presented to the Centrifuge team, fixes were made and included in
several PRs.

This review is a code review to identify potential vulnerabilities in the code. The reviewers did
not investigate security practices or operational security and assumed that privileged accounts
could be trusted. The reviewers did not evaluate the security of the code relative to a standard
or specification. The review may not have identified all potential attack vectors or areas of
vulnerability.

Electisec and the auditors make no warranties regarding the security of the code and do not
warrant that the code is free from defects. Electisec and the auditors do not represent nor imply
to third parties that the code has been audited nor that the code is free from defects. By

S

https://github.com/centrifuge/protocol-v3
https://github.com/centrifuge/protocol-v3/57b6ed25c861664307f0ce283e0fc8c6b2b83111

Electisec Centrifuge V3 Review

deploying or using the code, Centrifuge and users of the contracts agree to use the code at their
own risk.

3 Findings Explanation

Findings are broken down into sections by their respective impact:

e Critical, High, Medium, Low impact: These are findings that range from attacks that may
cause loss of funds, impact control/ownership of the contracts, or cause any unintended
consequences/actions that are outside the scope of the requirements.

e Undetermined: Findings whose impact could not be fully assessed within the time
constraints of the engagement. These issues may range from low to critical severity, and
while their exact consequences remain uncertain, they present enough potential risk to
warrant attention and remediation.

o Gas savings: Findings that can improve the gas efficiency of the contracts.

e Informational: Findings including recommendations and best practices.

4 Critical Findings
None.

5 High Findings

5.1 Shares are transferred twice during the request to redeem for legacy vaults

The legacy vault will transfer shares to escrow upon request for redemption, but this also occurs
as part of the execution of the new asynchronous manager.

Technical Details

The implementation of the original requestRedeem() function transfers the shares from the
user to the escrow after calling the manager.

1 131: address escrow = manager.escrow();
> 132: try ITranche(share).authTransferFrom(sender, owner, escrow, shares) returns
(bool) {}

3 133: catch {

4 134: // Support tranche tokens that block authTransferFrom. In this case
ERC20 approval needs to be set

5 135: require(ITranche(share).transferFrom(owner, escrow, shares), "
ERC7540Vault/transfer-from-failed");

6 136: }

7 137:

The LegacyVaultAdapter contract, working as the manager of the legacy vault, will forward the
call to the new AsyncRequestManager, which will also attempt to transfer the shares.

1 144: balanceSheet.transferSharesFrom(vault .poolId(), vault .scId(), sender ,
owner, address(globalEscrow), shares);

https://github.com/centrifuge/vaults-internal/blob/b8f64daddcec8c9a53143c98a80119b2b25d5399/src/ERC7540Vault.sol#L119
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L144

Electisec Centrifuge V3 Review

Impact

High. The issue could block redemption requests or cause a duplicate share transfer, leading to
potential losses.

Recommendation

As the legacy functionality must be maintained, the adapter should implement logic similar to
the new manager implementation, but without handling the share transfer.

Developer Response

Fixed in PR#478. The Centrifuge team decided to remove the adapter from the planned
migration to V3, so this code is not in use anymore.

6 Medium Findings

6.1 Zero deposits into the balanceSheet will block future snapshots

The OnOfframpManager and syncDepositVault accept deposits from any accounts and
don’t enforce minimum deposits, allowing the balance sheet queue counter to increase. The
counter can’t be reset when there are no deposits in the queue, blocking snapshots.

Technical Details

The deposit() function is called by sync and async vaults as well as the
OnOfframpManager .
When depositing, it will call the internal function updateAssets() , inside which it will

increment the shareQueue.queuedAssetCounter if the previous queued deposits and
withdrawals are set to 0. Then it will increase the deposits queued by the deposited amount.
Later, when the manager calls submitQueuedAssets() to sync the hub with the

balanceSheet , it will reset the queued deposits and withdrawals as well as decrement the
shareQueue.queuedAssetCounter . The assetCounter variable is used inside the function
to determine if a snapshot should occur. This is the case if
shareQueue.queuedAssetCounter == assetCounter ; it is also subtracted from it at the

end of the function. assetCounter will always be either 0 or 1, depending on whether there
are queued deposits and withdrawals, telling the function to trigger a snapshot only once the
queue has been cleared.

However, when depositing, there is no check on zero deposits, which allows any user to
increment the shareQueue.queuedAssetCounter variable infinitely. This is an issue because

the submitQueuedAssets() function relies on it to trigger snapshots and expects it to be
incremented only when there are queued deposits and withdrawals.

By making the variable out of sync, the isSnapshot parameter sent to the hub will always be
false, and there is no way to fix the shareQueue.queuedAssetCounter . This could lead the

hub to be out of sync with the balanceSheet .
POC:

https://github.com/centrifuge/protocol-v3/pull/478
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/BalanceSheet.sol#L98-L98
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/BalanceSheet.sol#L335-L335
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/BalanceSheet.sol#L205-L205
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/BalanceSheet.sol#L205-L205

Electisec Centrifuge V3 Review

w

© © N o u

10
11
12
13
14
15
16
17

19

21

22

24
25
26
27

29

30

31

32

33

34

35

37

38

39

41
42

43

45

46

48

49

50

52

53

55

contract OnOfframpManagerDepositZeroSuccessTests is OnOfframpManagerBaseTest {
using CastLib for *;
using UpdateContractMessagelLib for *;

function testDeposit() public {
//setup
vm.prank(address(spoke));
manager.update(
POOL A,
defaultTypedShareClassId,
UpdateContractMessagelLib.UpdateContractUpdateAddress ({
kind: bytes32("onramp"),
assetId: defaultAssetId,
what: bytes32(""),
isEnabled: true
}) .serialize()
)

balanceSheet.updateManager(POOL A, address(manager), true);

assertEq(erc20.balanceOf (address(manager)), 0);
assertEq(balanceSheet.availableBalanceOf (manager.poolIld(), manager.scId(),
address(erc20), erc20TokenId), 0);

//do 3 empty deposits

manager.deposit(address(erc20), erc20TokenId, 0, address(manager));
manager.deposit(address(erc20), erc20TokenId, 0, address(manager));
manager.deposit(address(erc20), erc20TokenId, 0, address(manager));

assertEq(erc20.balanceOf(address(manager)), 0);
assertEq(
balanceSheet.availableBalanceOf(manager.poolId(), manager.scId(), address(

erc20), erc20TokenId), 0O

D5

//the counter gets incremented 3 times

(,,uint32 queuedAssetCounter,) = balanceSheet.queuedShares(manager.poolld(),
manager.scId());

assertEq(queuedAssetCounter, 3);

//add a >1 valid deposit
erc20.mint(address(manager), 1el8);
manager.deposit(address(erc20), erc20TokenId, 1lel8, address(manager));

//now we're at 4

(,, queuedAssetCounter,) = balanceSheet.queuedShares(manager.poolId(), manager.
scId());

assertEq(queuedAssetCounter, 4);

//let's try to create a snapshot
balanceSheet.submitQueuedAssets(manager.poolId(), manager.scId(), balanceSheet.
spoke().assetToId(address(erc20), 0), 0);

//effectively reduces by 1 since balance > 0

(,, queuedAssetCounter,) = balanceSheet.queuedShares(manager.poolId(), manager.
scld());

assertEq(queuedAssetCounter, 3);

//doing it again will not reduce the counter though
balanceSheet.submitQueuedAssets(manager.poolId(), manager.scId(), balanceSheet.
spoke().assetToId(address(erc20), 0), 0);

(,, queuedAssetCounter,) = balanceSheet.queuedShares(manager.poolId(), manager.

Electisec Centrifuge V3 Review

scId());
56 assertEq(queuedAssetCounter, 3);

57 }
58}

Impact

Medium. The isSnapshot parameter will always be false which may impact the HUB
accounting.

Recommendation

Block zero deposits or do not increment the queue counter on zero deposits.

Developer Response
Fixed in 168h35f.
7 Low Findings

7.1 Transfer restriction could cause losses when redemptions are fulfilled

Using maxRedeem() inside fulfillRedeemRequest() could return zero pending claims if
the user is affected by transfer restrictions.

Technical Details

The implementation of fulfillRedeemRequest() relies on maxRedeem() to recalculate the

redeemPrice .

1 317: // Calculate new weighted average redeem price and update order book values
2 318: state.redeemPrice = calculatePriceAssetPerShare(

3 319: vault ,

4 320: ((maxRedeem(vault , user)) + fulfilledShares).toUint128(),

5 321: state.maxWithdraw + fulfilledAssets,

6 322: MathLib.Rounding.Down

7 323:);

The intention here is to use maxRedeem(vault , user) along with state.maxWithdraw to

update the price given the additions of fulfilledShares and fulfilledAssets .
However, maxRedeem() returns zero if the user is currently affected by transfer restrictions, in
which case the redemption price will ignore existing assets pending claim.

Impact

Low.

https://github.com/centrifuge/protocol-v3/pull/462/commits/168b35fa6ea4baf5b86fd1f0ba5f52a5ac0305b9
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L521
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L298

Electisec Centrifuge V3 Review

Recommendation

Refactor maxRedeem() into a new variant without the transfer checks, like maxDeposit() ,
and use this logic in fulfillRedeemRequest() .

Developer Response

Fixed in PR#462.

7.2 The AsyncRequestManager: :max* view functions will return incorrect values if the

share token implements amount-based restrictions

The AsyncRequestManager contract’s maxDeposit() , maxMint() , maxWithdraw() and

maxRedeem() functions will return an incorrect value if the share token implements a hook
with amount based transfer restrictions, causing them to return non-zero maximum values even
when no actual actions can be performed.

Technical Details

The root cause of this issue lies in how the functions mentioned above validate transfer
restrictions:

1 if (! canTransfer(vault , ESCROW HOOK ID, user, 0))

Unlike the rest of the contract, where canTransfer() is always called with the actual share
amount being transferred, the view functions deviate from this pattern by hardcoding the share
amount to zero. When a hook implements amount-based transfer restrictions (e.g., maximum
investment limits per user, global caps, or per-transaction limits), passing zero to
_canTransfer() will likely return true since zero doesn’t violate any amount-based
restrictions. However, when users attempt to perform the actual operation with the returned
maximum values, the hook will correctly enforce its restrictions and revert the transaction.

Impact

Low. This issue causes the maxDeposit() , maxMint() , maxWithdraw() and

maxRedeem() functions to return inaccurate maximum values when amount based transfer
restrictions are implemented. However, the impact is limited since the actual operations enforce
these restrictions.

Recommendation

Modify the maxDeposit() , maxMint() , maxWithdraw() and maxRedeem() functions to

use the actual share amounts when calling canTransfer() instead of hardcoding it to zero.
This approach maintains the existing interface and ensures consistency between view functions
and actual operations by providing accurate information about whether the intended operation
is possible to execute.

https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L500
https://github.com/centrifuge/protocol-v3/pull/462/commits/f8f7334c6afc73529f4063793321ca6a38c07f88#diff-7d7dfc1e101db8d25cad8ee6403b349d90b19f18d7be169180f2d1b20ea23a5d
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L493-L498
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L507-L512
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L515-L518
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L521-L526
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L493-L498
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L507-L512
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L515-L518
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L521-L526
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L493-L498
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L507-L512
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L515-L518
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L521-L526

Electisec Centrifuge V3 Review

U A W N

10

12

13
14
15
16
17
18
19
20

22

23

24

25

26

27

28

30

31
32

34

35

37

38
39

function maxDeposit(IBaseVault vault , address user) public view returns (
uint256 assets) {
- if (! canTransfer(vault , ESCROW HOOK ID, user, 0)) {

- return 0;

= b

+ if (! canTransfer(vault , ESCROW HOOK ID, user, investments[vault][
user].maxMint)) {

+ return 0;

+ }

assets = uint256(maxDeposit(vault , user));

}

function maxMint(IBaseVault vault , address user) public view returns (
uint256 shares) {
- if (! canTransfer(vault , ESCROW HOOK ID, user, 0)) {
- return 0;
= }

shares = uint256(investments[vault][user].maxMint);

+ if (! canTransfer(vault , ESCROW HOOK ID, user, shares)) {
+ return 0;
+ }

}

function maxWithdraw(IBaseVault vault , address user) public view returns (
uint256 assets) {
- if (! canTransfer(vault , user, address(0), 0)) return 0;

+ AsyncInvestmentState memory state = investments[vault][user];

+ shares = uint256(assetToShareAmount(vault , state.maxWithdraw, state.
redeemPrice, MathLib.Rounding.Down));

+ if (! canTransfer(vault , user, address(0), shares)) return 0;

assets = uint256(investments[vault][user].maxWithdraw);

}

function maxRedeem(IBaseVault vault , address user) public view returns (
uint256 shares) {
- if (! canTransfer(vault , user, address(0), 0)) return 0O;
- AsyncInvestmentState memory state = investments[vault][user];

- shares = uint256(assetToShareAmount(vault , state.maxWithdraw, state.
redeemPrice, MathLib.Rounding.Down));

+ AsyncInvestmentState memory state = investments[vault][user];
+ shares = uint256(assetToShareAmount(vault , state.maxWithdraw, state.
redeemPrice, MathLib.Rounding.Down));
+ if (! canTransfer(vault , user, address(0), shares)) return 0;
1

Developer Response

Fixed in PR#A482.

8 Gas Saving Findings

https://github.com/centrifuge/protocol-v3/pull/482

Electisec Centrifuge V3 Review

8.1 Cache storage variable

Multiple parts of the code could benefit from caching storage variables to save gas.

Technical Details

In spoke.sol:

e In updatePricePoolPerShare() the variable
shareClass.pricePoolPerShare.computedAt is read twice.
e In shareToken() the variable shareClass.shareToken is read twice.

e In pricePoolPerShare() the variable shareClass.pricePoolPerShare is read
twice.

In AsyncRequestManager.sol :

o In approvedDeposits(), issuedShares(), revokedShares(), withdraw() the

variable balanceSheet is read multiple times.
e In fulfillDepositRequest() and fulfillRedeemRequest() , the variables

state.maxMint , state.pendingDepositRequest , state.maxWithdraw ,
state.pendingRedeemRequest are read multiple times.

In: SyncManager.sol:

e In issueShares() the variable balanceSheet is read multiple times.
e In shareToAssetAmount() the variable spoke is read twice.

In BalanceSheet :

e In multicall() the variable gateway is read multiple times.

e In issue(), revoke() and submitQueuedShares() the variable shareQueue is
read multiple times.

e In submitQueuedAssets() and updateAssets() the variable assetQueue is read
multiple times.

Impact

Gas.

Recommendation

Cache storage variables.

Developer Response

Acknowledged. We consider readability more valuable here, and gas cost seems minimal.

https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/Spoke.sol#L255-L255
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/Spoke.sol#L427-L427
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/Spoke.sol#L447-L447
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L220-L220
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L240-L240
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L246-L246
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L437-L437
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L265-L265
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L298-L298
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/SyncManager.sol#L202-L202
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/SyncManager.sol#L233-L233
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/BalanceSheet.sol#L80-L80
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/BalanceSheet.sol#L165-L165
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/BalanceSheet.sol#L185-L185
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/BalanceSheet.sol#L246-L246
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/BalanceSheet.sol#L205-L205
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/BalanceSheet.sol#L335-L335

Electisec Centrifuge V3 Review

8.2 Avoid asset self-transfer in VaultRouter

The deposit() implementation executes an ERC20 transfer from the contract to itself.

Technical Details

e VaultRouter.sol#L135
Impact

Gas savings.

Recommendation

Avoid the transfer if owner == address(this) . This should help to save gas and also avoid
conflicts with non-standard ERC20 implementations.

Developer Response

Fixed in df6¢H8b.

8.3 Simplify manager lookup in AsyncVault

Technical Details

The AsyncVault contract fetches its manager using an external call to itself instead of just
referencing the storage variable.

1 148: function asyncManager() public view returns (IAsyncRequestManager) {
2 149: return IAsyncRequestManager(address(IAsyncRedeemVault (this).
asyncRedeemManager()));
3 150: }
Impact

Gas savings.

Recommendation

The manager can be referenced by using the asyncRedeemManager variable. Note that the
asyncManager() function is called in every interaction with the manager, present in most
functions.

Developer Response

Fixed in PRA479.

https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/VaultRouter.sol#L135
https://github.com/centrifuge/protocol-v3/pull/462/commits/df6c58bada5bee861ffb3b2fbbbc1b891af20f99#diff-b718607f380b901292cff484622241096a53434bcdc641336afa997895920c24R126
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncVault.sol#L148
https://github.com/centrifuge/protocol-v3/pull/479/files

Electisec Centrifuge V3 Review

8.4 Duplicate limit checks for maxMint and maxWithdraw

Technical Details

The implementation of processDeposit() checks twice that

sharesUp <= state.maxMint . Given the check in line 375, the conditional in line 376 should
not be needed.

1 375: require(sharesUp <= state.maxMint, ExceedsDepositLimits());
2 376: state.maxMint = state.maxMint > sharesUp ? state.maxMint - sharesUp : 0;

The same happens in processRedeem() when updating maxWithdraw .

1 428: require(assetsUp <= state.maxWithdraw, ExceedsRedeemLimits());
2 429: state.maxWithdraw = state.maxWithdraw > assetsUp ? state.maxWithdraw -
assetsUp : 0;
Impact

Gas savings.

Recommendation

Remove the conditionals in lines 376 and 429. The subtractions can also be wrapped in an
unchecked math block.

Developer Response

Fixed in PR#479.

8.5 Redundant shareQueue.isPositive assignments in BalanceSheet operations

Redundant SSTORE operations waste gas.

Technical Details

There are redundant SSTORE operations when isPositive is already in the correct state in
the BalanceSheet.sol contract’s revoke() function.

1 function revoke(PoolId poolld, ShareClassId scId, uintl28 shares) external
authOrManager(poolId) {

3 if (!shareQueue.isPositive) { // escaping the if block means shareQueue is

positive
4 shareQueue.delta += shares;
5 } else if (shareQueue.delta > shares) {
6 shareQueue.delta -= shares;
7 shareQueue.isPositive = true; // @audit-info already positive, can remove
8 }

13

https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L368
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/AsyncRequestManager.sol#L412
https://github.com/centrifuge/protocol-v3/pull/479/files

Electisec Centrifuge V3 Review

Impact

Gas savings.

Recommendation

Remove the redundant isPositive assignment in revoke() :

1 function revoke(PoolId poolId, ShareClassId scId, uintl28 shares) external
authOrManager(poolId) {

2 " e

3 if (!shareQueue.isPositive) { // escaping the if block means shareQueue

is positive

4 shareQueue.delta += shares;

5 } else if (shareQueue.delta > shares) {

6 shareQueue.delta -= shares;

7 - shareQueue.isPositive = true;

8 }

Developer Response
Fixed in PR#461.

9 Informational Findings

9.1 Inconsistent Vault Validation Between Router Functions

VaultRouter applies inconsistent vault validation patterns across similar functions.

Technical Details

The VaultRouter contract shows inconsistent vault validation between similar operations:

e claimDeposit() performs no vault validation
e claimRedeem() calls spoke.vaultDetails(vault) which validates the vault exists

Impact
Informational. This creates potential confusion about when vault validation is required.
Recommendation

Standardize vault validation across router functions, or document the design rationale if the
differences are intentional.

Developer Response
Fixed in PR#479.

https://github.com/centrifuge/protocol-v3/pull/461/files#diff-b7245956ff1364522e6d3c68652ab22114d8a5b21656b5d73009635ed76f756c
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/VaultRouter.sol#L196-L200
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/VaultRouter.sol#L233-L244
https://github.com/centrifuge/protocol-v3/pull/479/files#diff-b718607f380b901292cff484622241096a53434bcdc641336afa997895920c24

Electisec Centrifuge V3 Review

9.2 OnOfframpManager should raise if the update kind is not supported

The switch present in update() fails silently if m.kind is not between the supported options.
Technical Details

OnOfframpManager.sol#L59-1.82

Impact

Informational.

Recommendation

Revert if the update kind is not supported.

Developer Response

Fixed in df6¢H8b.

9.3 Validate that entities are registered in the Spoke contract

There are multiple instances in the Spoke contract where the asset or vault is retrieved from
storage without verifying whether it has been registered.

Technical Details

assetld:

e deployVault()
e LlinkVault()
e unlinkVault()

vault :

e LlinkVault()
e unlinkVault()

Impact
Informational.
Recommendation

For the asset id, use the idToAsset () accessor, which checks if the asset is not null. For the
vault, use vaultDetails() . registerVault() could also check that
asset != address(0) to provide consistency.

https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/managers/OnOfframpManager.sol#L50
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/managers/OnOfframpManager.sol#L59-L82
https://github.com/centrifuge/protocol-v3/pull/462/commits/df6c58bada5bee861ffb3b2fbbbc1b891af20f99#diff-a4df706669395d13a5642542f2b19b8a38fd14eb508ac8fd4f66a4864a9ad58dR84
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/Spoke.sol#L358
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/Spoke.sol#L383
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/Spoke.sol#L401
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/Spoke.sol#L390
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/Spoke.sol#L408

Electisec Centrifuge V3 Review

Developer Response

Vault checks were added in ca9fHch.
Asset id checks were added in df6¢H8b.

Auditors Response

Further discussion related to the vault checks originally recommended in this finding revealed a
severe issue in which managers could link or unlink vaults from other pools. This vulnerability
was mitigated as part of the fixes in changeset ca9f5chb .

9.4 Apply CEI in BalanceSheet

Technical Details

In submitQueuedAssets() and submitQueuedShares() , the sender, along with the
cross-chain functionality, is invoked before clearing the state, enabling potential reentrancy
issues.

Impact

Informational.

Recommendation

Reset the state before calling the sender contract.

Developer Response

Fixed in 92ed22e.

9.5 Incorrect argument in RedeemRequest event

The sender argument is wired to msg.sender , but this is the caller to
onRedeemRequest () and not the original caller for the request.

Technical Details

BaseVaults.sol#1.319-1.321

Impact

Informational.

16

https://github.com/centrifuge/protocol-v3/pull/462/commits/ca9f5cb9ad00074d69e6b4726bb91e667172e8f9
https://github.com/centrifuge/protocol-v3/pull/462/commits/df6c58bada5bee861ffb3b2fbbbc1b891af20f99#diff-643c700faae8c9145792b918f25e7b5f04dc94d4bb0ec9db868cdc1ed3af6993
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/BalanceSheet.sol#L205
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/spoke/BalanceSheet.sol#L246
https://github.com/centrifuge/protocol-v3/pull/462/commits/92ed22ebfc43f8b8e86446b7b00de26515c67f24
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/BaseVaults.sol#L319-L321

Electisec Centrifuge V3 Review

Recommendation
Forward the original caller to onRedeemRequest() .
Developer Response

Acknowledged, left as is for legacy reasons.

9.6 Incorrect argument in CancelRedeemClaim event

The CancelRedeemClaim event is emitted with receiver as the first argument and
controller as the second, but in the definition of the event, these parameters are in the
opposite order.

Technical Details

BaseVaults.sol#1L.290

Impact

Informational.

Recommendation

Switch the order of the receiver and controller arguments.
Developer Response

Fixed in PR#479.

9.7 Events part of executions initiated in the LegacyVaultAdapter are emitted in the legacy
vault

The events that occur during flows, which are part of the vault functionality of the adapter, will
be emitted in the legacy vault.

Technical Details

The implementation of the LegacyVaultAdapter contract overrides the callbacks used to emit
events, forwarding them to the legacy vault.

This will work fine for flows initiated in the legacy vault, but will also mean that executions
initiated as part of the new vault functionality in the adapter will be emitted in the legacy vault.

e onDepositClaimable()

e onCancelDepositClaimable()
o onRedeemClaimable()

e onCancelRedeemClaimable()

https://eips.ethereum.org/EIPS/eip-7887#cancelredeemclaim
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/BaseVaults.sol#L290
https://github.com/centrifuge/protocol-v3/pull/479/files
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/legacy/LegacyVaultAdapter.sol#L224
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/legacy/LegacyVaultAdapter.sol#L228
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/legacy/LegacyVaultAdapter.sol#L240
https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/legacy/LegacyVaultAdapter.sol#L248

Electisec Centrifuge V3 Review

Impact

Informational.

Recommendation

The adjustment would require changes to determine where flows were originally initiated and to
log these in the proper place later.

Developer Response

Acknowledged.

9.8 onRedeemRequest() is never called

Technical Details

The functions onRedeemRequest() from the BaseVault and the LegacyAdapter are never
called.

Impact

Informational.

Recommendation

Remove the functions or document why they aren’t being used at the moment.
Developer Response

Acknowledged, leaving this for legacy reasons.

9.9 ShareClassld Validation Bypass in OnOfframpManager Cross-Chain Updates

The OnOfframpManager contract is designed to manage on- and off-ramp parameters per
share class. OnOfframpManager.update() method validates the poolId and caller

(spoke) but silently discards the ShareClassId (scId).

Any cross-chain UpdateContract message that is authorised for Share-Class-A can

therefore be redirected to the OnOfframpManager of Share-Class-B simply by choosing
that manager’s address as the target.

18

https://github.com/centrifuge/protocol-v3/blob/57b6ed25c861664307f0ce283e0fc8c6b2b83111/src/vaults/BaseVaults.sol#L319-L319

Electisec Centrifuge V3 Review

Technical Details

The vulnerability exists in the OnOfframpManager.update() function, which implements the

IUpdateContract interface for cross-chain configuration updates. While the function
correctly validates the poolld and caller authorization, it completely ignores the ShareClassld
parameter, unlike other managers in the system.

Root Cause Analysis

1 // OnOfframpManager.sol:50-53 - VULNERABLE
> function update(PoolId poolId , ShareClassId, /* scId */ bytes calldata payload)

external {
3 require(poolId == poolId , InvalidPoolId()); // [] Pool validation
4 require(msg.sender == spoke, NotSpoke()); // O Caller validation
5 // [ShareClassId completely ignored!

Compare this to the properly implemented SyncManager.update() :

1 // SyncManager.sol:57-63 - SECURE

> function update(PoolId poolId, ShareClassId scId, bytes memory payload) external auth {

3 // ...

4 require(address(spoke.shareToken(poolIld, scId)) != address(0),
ShareTokenDoesNotExist());

5 // [0 Properly validates ShareClassId exists

Call chain analysis
(a) A Pool manager submits Hub.updateContract , crafting an update for Share-Class-A. (b)

Sets the target address to OnOfframpManager B. (c) Message arrives on the spoke: poolId
matches, scId = A (mismatched), but update() still executes on manager B. (d) The pool
manager enables onramp[asset] , grants relayer[attacker] , or rewires

offramp[asset] to their account. (e) Subsequent deposits/withdrawals in Share-Class-B
follow the their-controlled rules, enabling undisclosed assets or siphoning funds.

The project requires that ”a balance-sheet manager of one pool should never control another”.
In V3, each share class has its manager, so the same principle applies at the share-class scope.
Docs emphasize multiple investment assets per share class; that modularity only holds if
configuration messages can’t leak across classes.

The issue is not about whether managers can be trusted, but rather about their ability to
extend their capacity beyond the intended scope of their initial capabilities.

Impact
Informational.

Recommendation

Implement proper ShareClassld validation in OnOfframpManager.update() consistent with
other managers:

1 function update(PoolId poolId , ShareClassId scId , bytes calldata payload) external {

2 require(poolId == poolId , InvalidPoolId());
3 require(msg.sender == spoke, NotSpoke());
5 // NOTE: ADD THIS CRITICAL VALIDATION:

19

Electisec Centrifuge V3 Review

6 require(scId == scId , InvalidShareClassId());
8 // Alternative validation approach (like SyncManager):
9 // require(address(ISpoke(spoke).shareToken(poolId , scId)) != address(0),

ShareTokenDoesNotExist());

11 uint8 kind = uint8(UpdateContractMessagelLib.updateContractType(payload));
12 // ... rest of function unchanged
13 }

Developer Response

Fixed in PR#462.

9.10 Incorrect NatSpec on isValid() misrepresents validation logic

The NatSpec (@Qdev) on the isValid() function inaccurately describes the validation
behavior. The documentation states that the function returns false if the price is zero.
However, the actual implementation does not check whether price == 0. This mismatch
between the spec and implementation can mislead developers and auditors, especially in edge
cases such as zero-price deposits.

Technical Details

The current NatSpec and implementation for isValid() in Spoke contract shows complete
divergence:

1 /// @dev Price struct that contains a price, the timestamp at which it was computed and
the max age of the price.

2 struct Price {

3 uintl28 price;

4 uint64 computedAt;
5 uint64 maxAge;

6 }

8 /// @dev Checks if a price is valid. Returns false if price is 0 or computedAt is 0.
Otherwise checks for block

9 /// timestamp <= computedAt + maxAge

10 function isValid(Price memory price) view returns (bool) {

11 if (price.computedAt '= 0) { // Initialization check
12 return block.timestamp <= price.validUntil();
13 } else {
14 return false; // Uninitialized state
15 }
16}
This shows that the function does not reject price == 0, contrary to the comment. A zero

price 0.0 is intentional and should be treated as valid as per the terms outlined by the project.

Impact

Informational. This is a documentation inconsistency. It does not directly impact functionality,
but may cause confusion or lead to faulty assumptions.

90

https://github.com/centrifuge/protocol-v3/pull/462/commits/f8f7334c6afc73529f4063793321ca6a38c07f88#diff-a4df706669395d13a5642542f2b19b8a38fd14eb508ac8fd4f66a4864a9ad58d

Electisec Centrifuge V3 Review

Recommendation

Fix the NatSpec to reflect the actual behavior:

1 - /// @dev Checks if a price is valid. Returns false if price is 0 or
computedAt is 0. Otherwise checks for block

> - /// timestamp <= computedAt + maxAge

s + /// @dev Checks if a price is valid. Returns false if computedAt is 0.
Otherwise checks for block

a + /// timestamp <= computedAt + maxAge

s + /// @dev A price of 0 may still be valid if within its validity window.

6 function isValid(Price memory price) view returns (bool) {

7 if (price.computedAt !'= 0) { // Initialization check

8 return block.timestamp <= price.validUntil();

9

} else {
10 return false; // Uninitialized state
11 }
12 }

Developer Response

Fixed in PR#462.

9.11 OnOfframpManagerFactory.newManager() allows creation of OnOfframpManager
contracts with an arbitrary pair of (poolld, shareClassId)

Missing input validation in OnOfframpManagerFactory.newManager() allows creation of
OnOfframpManager contracts with inconsistent poolld/ShareClassld relationships, potentially
leading to operational failures and funds being locked.

Technical Details

The OnOfframpManagerFactory.newManager() function lacks critical input validation to

ensure that the provided ShareClassId actually belongs to the specified PoolId . This
breaks a fundamental invariant in the system where ShareClasslds are designed to embed their
parent Poolld.

1 function newManager(PoolId poolId, ShareClassId scId) external returns (
IOnOfframpManager) {

2 // @audit-issue No validation that scId belongs to poolld

3 OnOfframpManager manager = new OnOfframpManager{salt: keccak256(abi.encode(poolld.
raw(), scId.raw()))}(

4 poolId, scId, spoke, balanceSheet

5)5

7 emit DeployOnOfframpManager(poolId, scId, address(manager));

8 return IOnOfframpManager(manager);

9 }

The ShareClassld type is structured to embed the Poolld in its upper 64 bits:

1 // ShareClassId.newShareClassId()
> function newShareClassId(PoolId poolId, uint32 index) pure returns (ShareClassId scId) {

https://github.com/centrifuge/protocol-v3/pull/462/commits/f8f7334c6afc73529f4063793321ca6a38c07f88#diff-aa63f0fc5ec4fc1ad2f36df2652644a06dcf630fc48713ef134474bc96d22b21

Electisec Centrifuge V3 Review

3 return ShareClassId.wrap(bytesl6((uint128(PoolId.unwrap(poolId)) << 64) + index));
However, newManager() accepts any arbitrary combination of poolId and scId
parameters without verifying this relationship. This allows the creation of managers where:

e The constructor receives poollId = X and scId =Y
o But scId was actually created for poolld = Z (where Z != X))

Impact

Informational. Managers can be deployed with inconsistent poolld/ShareClassId relationships.
These managers can then be updated as long as the poolld matches, regardless of the
ShareClassld validity.

Recommendation

Add validation to ensure the ShareClassId belongs to the specified Poolld:

1 function newManager(PoolId poolId, ShareClassId scId) external returns (
IOnOfframpManager) {

2 // Extract embedded poolId from ShareClassId

3 uint64 embeddedPoolId = uint64(uint128(scId.raw()) >> 64);

4 require (embeddedPoolId == poolld.raw(), InvalidShareClassForPool());

6 OnOfframpManager manager = new OnOfframpManager{salt: keccak256(abi.encode(poolld.

raw(), scId.raw()))}(
poolId, scId, spoke, balanceSheet

~

8);

10 emit DeployOnOfframpManager(poolld, scId, address(manager));
11 return IOnOfframpManager(manager);
12 }

Add the corresponding error definition:

1 error InvalidShareClassForPool();

This ensures that OnOfframpManager contracts are only created with valid, consistent
pool/share class relationships, preventing operational failures and maintaining system invariants.

Developer Response

Fixed in PR#A#461.

9.12 Share and asset queue drift in BalanceSheet due to incorrect signed-emulation logic

The BalanceSheet contract attempts to track net share issuance vs. revocation between
snapshots by storing an unsigned delta plus a boolean isPositive flag. However, when the
absolute amount of issuance equals the absolute amount of revocation (or vice-versa), the code’s
branch conditions yield delta == 0 with isPositive == false in one sequence, but
delta == 0 with isPositive == true in another.

https://github.com/centrifuge/protocol-v3/pull/461/files#diff-a4df706669395d13a5642542f2b19b8a38fd14eb508ac8fd4f66a4864a9ad58d

Electisec Centrifuge V3 Review

Technical Details

BalanceSheet::issue() and BalanceSheet::revoke() are intended to maintain a
running signed total of share changes until the following cross-chain snapshot.
Instead of using a true signed integer, the code tracks

1 struct ShareQueueAmount {

2 uint128 delta; // absolute magnitude
3 bool isPositive;

4 }

and then in issue() and revoke() it updates (delta, isPositive) via conditional
branches.

However, when the absolute amounts are equal (e.g., you issue 50 shares then revoke 50 shares,
or revoke 50 then issue 50), you end up with delta == 0 but the sign flips depending on
which function ran last.

1 /// @inheritdoc IBalanceSheet
2 function issue(PoolId poolld, ShareClassId scId, address to, uintl128 shares)
external authOrManager(poolld) {

3 emit Issue(poolId, scId, to, pricePoolPerShare(poolId, scId), shares);

4 ShareQueueAmount storage shareQueue = queuedShares[poolId][scId];

5 if (shareQueue.isPositive || shareQueue.delta == 0) {

6 shareQueue.delta += shares;

7 shareQueue.isPositive = true;

8 } else if (shareQueue.delta > shares) {

9 shareQueue.delta -= shares;

10 shareQueue.isPositive = false;

11 } else {

12 shareQueue.delta = shares - shareQueue.delta;

13 shareQueue.isPositive = true;

14 }

15 IShareToken token = spoke.shareToken(poolId, scId);

16 token.mint(to, shares);

17 }

19 /// @inheritdoc IBalanceSheet

20 function revoke(PoolId poollId, ShareClassId scId, uintl28 shares) external
authOrManager(poolId) {

21 emit Revoke(poolId, scId, msg.sender, pricePoolPerShare(poolId, scId), shares);

22 ShareQueueAmount storage shareQueue = queuedShares[poolId][scId];

23 if (!shareQueue.isPositive) {

24 shareQueue.delta += shares;

25 } else if (shareQueue.delta > shares) {

26 shareQueue.delta -= shares;

27 shareQueue.isPositive = true;

28 } else {

29 shareQueue.delta = shares - shareQueue.delta;

30 shareQueue.isPositive = false;

31 }

32 IShareToken token = spoke.shareToken(poolId, scId);

33 token.authTransferFrom(msg.sender, msg.sender, address(this), shares);

34 token.burn(address(this), shares);

35 }

Case (A): issue(50) — revoke(50) (a) issue(50) sees
delta==0 || isPositive==true — sets delta=50, isPositive=true (b) revoke(50)

sees !isPositive==false and delta>shares==false — else-branch — sets
delta=0, isPositive=false

923

Electisec Centrifuge V3 Review

Case (B): revoke(50) — issue(50) (a) revoke(50) sees !isPositive==true —
first-branch — sets delta=50, isPositive=false (b) issue(50) sees
delta>0 || isPositive==true false, and delta>shares==false — else-branch — sets

delta=0, isPositive=true

Because zero in Solidity is neither positive nor negative, there’s no meaningful distinction—but
the Hub will receive a “zero with a negative sign” vs. “zero with a positive sign,” and
potentially handle them differently.

Impact
Informational.

Recommendation

Enforce “zero is positive” invariant. Immediately after each branch in both issue() and
revoke() , add:

1 if (shareQueue.delta == 0) {
2 shareQueue.isPositive = true;
3 }

This guarantees (0, true) is the canonical neutral state.
OR, use native signed arithmetic. Replace (uint128 delta, bool isPositive) with a
single int256 deltaSigned; :

int256 deltaSigned;

// In issue():

deltaSigned += int256(shares);
// In revoke():

deltaSigned -= int256(shares);

oA W N e

This eliminates the need for future manual emulation and leverages built-in sign handling.

Developer Response
Fixed in PR#462 and PR#488.

10 Final Remarks

The Centrifuge V3 protocol features an innovative design that allows on-chain tokenization of
real-world assets using EIP-7540 asynchronous vaults and a hub-and-spoke model, in which
pools can be deployed on a main chain (hub) that replicates to other peripheral chains (spoke).
The codebase and its architecture are well-designed and structured, demonstrating solid
mathematical foundations and good documentation practices. However, the multi-chain and
asynchronous nature of the protocol creates intricate interaction patterns that can be difficult to
reason about comprehensively, introducing complexity challenges that require careful
consideration.

As part of these complex interactions, one high-severity issue was identified related to incorrect
share transfer logic in the legacy adapter flows. Additionally, a medium-severity finding was
discovered that affects the synchronization of shares between the hub and spoke, which could
eventually impact cross-chain accountability.

https://github.com/centrifuge/protocol-v3/pull/462/commits/ef7e946208b4f56468f4ac1f7037bf6e4dbac005
https://github.com/centrifuge/protocol-v3/pull/488

Electisec Centrifuge V3 Review

The Centrifuge team demonstrated exceptional responsiveness in addressing identified issues
and engaging with the audit process. While the codebase features an excellent testing suite, the
legacy adapter functionality remains uncovered, though following this report, the Centrifuge
team decided to remove the adapter from the planned migration to V3, so this code is not in
use anymore.

95

	Centrifuge V3 Review
	Review Summary
	Scope
	Findings Explanation
	Critical Findings
	High Findings
	Shares are transferred twice during the request to redeem for legacy vaults

	Medium Findings
	Zero deposits into the codebgbalanceSheet will block future snapshots

	Low Findings
	Transfer restriction could cause losses when redemptions are fulfilled
	The codebgAsyncRequestManager::max* view functions will return incorrect values if the share token implements amount-based restrictions

	Gas Saving Findings
	Cache storage variable
	Avoid asset self-transfer in VaultRouter
	Simplify manager lookup in AsyncVault
	Duplicate limit checks for codebgmaxMint and codebgmaxWithdraw
	Redundant shareQueue.isPositive assignments in BalanceSheet operations

	Informational Findings
	Inconsistent Vault Validation Between Router Functions
	OnOfframpManager should raise if the update kind is not supported
	Validate that entities are registered in the Spoke contract
	Apply CEI in BalanceSheet
	Incorrect argument in RedeemRequest event
	Incorrect argument in CancelRedeemClaim event
	Events part of executions initiated in the LegacyVaultAdapter are emitted in the legacy vault
	codebgonRedeemRequest() is never called
	ShareClassId Validation Bypass in OnOfframpManager Cross-Chain Updates
	Incorrect NatSpec on codebgisValid() misrepresents validation logic
	OnOfframpManagerFactory.newManager() allows creation of OnOfframpManager contracts with an arbitrary pair of (poolId, shareClassId)
	Share and asset queue drift in BalanceSheet due to incorrect signed-emulation logic

	Final Remarks

