
Prepared for
Twyne

Audited by
HHK
adriro

September 2, 2025

Twyne Incremental Review
Smart Contract Security Assessment

Twyne Incremental Review

Contents

Review Summary 2
1 Protocol Overview . 2
2 Audit Scope . 2
3 Risk Assessment Framework . 2

3.1 Severity Classification . 2
4 Key Findings . 3
5 Overall Assessment . 3

Audit Overview 3
1 Project Information . 3
2 Audit Team . 4
3 Audit Resources . 4
4 Critical Findings . 4
5 High Findings . 4

5.1 Teleport should verify subaccount is tied to current borrower 4
6 Medium Findings . 5
7 Low Findings . 5

7.1 Missing SafeERC20 operations . 5
8 Gas Savings Findings . 6

8.1 Gas improvements in EulerWrapper . 6
9 Informational Findings . 6

9.1 Unchecked approval parameter inside EulerWrapper 6
9.2 Ineffective locking mechanism in LeverageOperator 7
9.3 Unused variable in LeverageOperator . 7
9.4 Empty contracts in deployment script . 8

10 Final Remarks . 9

— 1 —

Twyne Incremental Review

Review Summary

1 Protocol Overview

Twyne is a risk-modular credit delegation protocol built for the Ethereum Virtual Machine. It
addresses a fundamental inefficiency in current DeFi lending markets: the unused borrowing
power of users who deposit assets but do not borrow against them. By enabling these depositors
(Credit LPs) to earn additional yield by making their unused borrowing power available to
borrowers, Twyne unlocks higher capital efficiency while maintaining the security constraints of
the underlying lending markets.

2 Audit Scope

This audit covers the incremental review for Twyne V1 in PR 35 to the smart contracts in scope
across 1.5 days of review.

src/

├── Periphery

│ └── EulerWrapper.sol

├── TwyneFactory

│ └── CollateralVaultFactory.sol

├── operators

│ └── LeverageOperator.sol

└── twyne

├── CollateralVaultBase.sol

├── EulerCollateralVault.sol

└── VaultManager.sol

script

└── TwyneDeployEulerIntegration.s.sol

3 Risk Assessment Framework

3.1 Severity Classification

— 2 —

https://github.com/0xTwyne/twyne-contracts-v1/pull/35

Twyne Incremental Review

Severity Description Potential Impact
Critical Immediate threat to user funds or protocol

integrity
Direct loss of funds, protocol
compromise

High Significant security risk requiring urgent
attention

Potential fund loss, major
functionality disruption

Medium Important issue that should be addressed Limited fund risk, functional-
ity concerns

Low Minor issue with minimal impact Best practice violations, minor
inefficiencies

Undetermined Findings whose impact could not be fully
assessed within the time constraints of the
engagement. These issues may range from
low to critical severity, and although their
exact consequences remain uncertain, they
present a sufficient potential risk to war-
rant attention and remediation.

Varies based on actual severity

Gas Findings that can improve the gas effi-
ciency of the contracts.

Reduced transaction costs

Informational Code quality and best practice recommen-
dations

Improved maintainability and
readability

4 Key Findings

Breakdown of Finding Impacts

Impact Level Count

Critical 0

High 1

Medium 0

Low 1

Informational 4

Figure 1: Distribution of security findings by impact level

5 Overall Assessment

Audit Overview

1 Project Information

Protocol Name: Twyne

— 3 —

Twyne Incremental Review

Repository: https://github.com/0xTwyne/twyne-contracts-v1
Commit Hash: 802103a5b6621b64dea9adec43529728d7a0e374
Commit URL: https://github.com/0xTwyne/twyne-contracts-
v1/commit/802103a5b6621b64dea9adec43529728d7a0e374

2 Audit Team

HHK, adriro

3 Audit Resources

Code repositories and documentation

4 Critical Findings

None.

5 High Findings

5.1 Teleport should verify subaccount is tied to current borrower

A missing validation could be used to pull funds from dangling authorization.

Technical Details

The updated functionality of teleport() can be used to migrate a position from a
subaccount of the borrower.

1 237: function teleport(uint toDeposit, uint toBorrow, address subAccount) external

onlyBorrowerAndNotExtLiquidated whenNotPaused nonReentrant {

2 238: createVaultSnapshot();

3 239:

4 240: totalAssetsDepositedOrReserved += toDeposit;

5 241: _handleExcessCredit(_invariantCollateralAmount());

6 242:

7 243: if (toBorrow == type(uint).max) {

8 244: toBorrow = IEVault(targetVault).debtOf(subAccount);

9 245: }

10 246:

11 247: IEVC.BatchItem[] memory items = new IEVC.BatchItem[](3);

12 248: items[0] = IEVC.BatchItem({

13 249: targetContract: asset(),

14 250: onBehalfOfAccount: address(this),

15 251: value: 0,

16 252: data: abi.encodeCall(IERC20.transferFrom, (subAccount, address(this),

toDeposit)) // needs allowance

17 253: });

The problem is the absence of a validation that ties the subaccount to the current borrower,
leading to a transferFrom() action from an arbitrary account.
Typically, there should be no active allowance from third-party accounts, as collateral vaults are
allocated per borrower. However, since vaults can be liquidated, the borrower may shift to the
new liquidator, enabling the new borrower to access the old borrower’s funds.

— 4 —

https://github.com/0xTwyne/twyne-contracts-v1/blob/802103a5b6621b64dea9adec43529728d7a0e374/src/twyne/EulerCollateralVault.sol#L237

Twyne Incremental Review

Impact

High. New vault owners can siphon funds from a previous borrower.
Requirements:

• Collateral vault gets liquidated
• Excess approval exists
• The previous vault owner contains a non-zero amount of the collateral token
• Funds can only be pulled from the previous vault owner

Recommendation

Validate subaccount is an actual subaccount of the current borrower .

Developer Response

Fixed in commit 5945b31. To clarify, the proper implementation already existed in the
MockCollateralVault contract.

6 Medium Findings

None.

7 Low Findings

7.1 Missing SafeERC20 operations

The LeverageOperator contract executes ERC20 operations over arbitrary tokens without the
SafeERC20 wrapper, potentially causing incompatibility issues.

Technical Details

• LeverageOperator.sol#L156
• LeverageOperator.sol#L195

Impact

Low.

Recommendation

Use safeTransfer() and forceApprove() .

Developer Response

Fixed in PR#36.

— 5 —

https://github.com/0xTwyne/twyne-contracts-v1/pull/35/commits/5945b310d07000e42f1eb613ea069df88d614fa8
https://github.com/0xTwyne/twyne-contracts-v1/pull/35/commits/83747b437f035485b8f07006237c7f409cdfd955#diff-9abc9f9e83fff2bb247fdf36db974f23feb9f499f5ec85e0cb6e974048dd5fa7
https://github.com/0xTwyne/twyne-contracts-v1/pull/35/commits/83747b437f035485b8f07006237c7f409cdfd955#diff-9abc9f9e83fff2bb247fdf36db974f23feb9f499f5ec85e0cb6e974048dd5fa7
https://github.com/0xTwyne/twyne-contracts-v1/blob/802103a5b6621b64dea9adec43529728d7a0e374/src/operators/LeverageOperator.sol#L156
https://github.com/0xTwyne/twyne-contracts-v1/blob/802103a5b6621b64dea9adec43529728d7a0e374/src/operators/LeverageOperator.sol#L195
https://github.com/0xTwyne/twyne-contracts-v1/pull/36

Twyne Incremental Review

8 Gas Savings Findings

8.1 Gas improvements in EulerWrapper

Technical Details

The EulerWrapper contract enables a zapper functionality to deposit in Twyne.
Both functions have the callThroughEVC modifier, which will re-route the call through the
EVC. This modifier shouldn’t be needed as the implementation doesn’t strictly require it.
Additionally, note that each call to EVK vaults would need to be re-wrapped in the EVC that
corresponds to each vault (which may be Euler’s or Twyne’s).
Additionally, the pull token → approve → deposit cycle can leverage the skim
functionality and instead do:
1) transfer tokens from the caller to collateral 2) call skim() on the collateral with the
intermediate vault as the recipient 3) call skim() on the intermediate vault with the user as
the recipient

Impact

Gas savings.

Recommendation

Consider applying the suggested modifications.

Developer Response

Fixed in PR#36.

9 Informational Findings

9.1 Unchecked approval parameter inside EulerWrapper

Technical Details

The function depositUnderlyingToIntermediateVault() takes an intermediateVault

parameter and approves the Euler asset on it.
However, this intermediateVault is not enforced to be a legit vault deployed by the factory.
This allows any user to approve a malicious contract.
While the contract is not supposed to hold funds, it is advised to check the
intermediateVault against the Vault manager.

Impact

Informational.

— 6 —

https://github.com/0xTwyne/twyne-contracts-v1/pull/36
https://github.com/0xTwyne/twyne-contracts-v1/blob/deca583d97e11f3c0ad2140401d01a9b3f863a41/src/Periphery/EulerWrapper.sol#L32-L32

Twyne Incremental Review

Recommendation

Ensure the intermediateVault is a legitimate vault against the Vault Manager and/or
implement the gas-finding recommendations, which will remove the approval() call.

Developer Response

Fixed in PR#36.

9.2 Ineffective locking mechanism in LeverageOperator

The mechanism provided by flashloanLock does not enforce any lock.

Technical Details

The flashloanLock is toggled before executing the flashloan in executeLeverage() . The
implementation doesn’t provide any actual locking benefits because:

• This doesn’t work as a reentrancy guard: the function can be re-entered while the flag is
on.

• onMorphoFlashLoan() cannot be executed by anything other than the
LeverageOperator itself, cause the caller must be Morpho, and Morpho only calls the
flashloan initiator.

Impact

Informational. Gas savings.

Recommendation

Change the semantics of this lock to be a normal reentrancy guard in the
executeLeverage() function or remove the flashloanLock variable.

Developer Response

flashloanLock variable removed in PR#36. Added nonreentrant modifier for extra safety,
even if it is not necessarily required.

9.3 Unused variable in LeverageOperator

The initialCollateralBalance variable is written but never read.

Technical Details

LeverageOperator.sol#L40.

— 7 —

https://github.com/0xTwyne/twyne-contracts-v1/pull/36
https://github.com/0xTwyne/twyne-contracts-v1/blob/802103a5b6621b64dea9adec43529728d7a0e374/src/operators/LeverageOperator.sol#L84
https://github.com/0xTwyne/twyne-contracts-v1/pull/36
https://github.com/0xTwyne/twyne-contracts-v1/blob/802103a5b6621b64dea9adec43529728d7a0e374/src/operators/LeverageOperator.sol#L40

Twyne Incremental Review

Impact

Informational.

Recommendation

Remove the variable.

Developer Response

Fixed in PR#36.

9.4 Empty contracts in deployment script

The contracts referenced in the productionSetup() function are empty accounts in
Ethereum.

Technical Details

TwyneDeployEulerIntegration.s.sol#L280-L284.

1 280: } else if (block.chainid == 1) {

2 281: oracleRouterFactory = 0x72735e5dd42EDc979c600766532eA704842CfB7b;

3 282: evc = EthereumVaultConnector(payable(0

xC36aED7b7816aA21B660a33a637a8f9B9B70ad6c));

4 283: factory = GenericFactory(0xd5e966dB359f1cB2A01280fCCBEB839Ac572CE35);

5 284: protocolConfig = ProtocolConfig(0

x3b68711EF6c1988c96CBD32d929b76cB09b579Ea);

Impact

Informational.

Recommendation

Ensure to deploy these contracts properly before executing the script.

Developer Response

Acknowledged. These addresses are just placeholders. The deployment process involves
executing an evk-periphery script, which provides these addresses.

— 8 —

https://github.com/0xTwyne/twyne-contracts-v1/pull/36
https://github.com/0xTwyne/twyne-contracts-v1/blob/802103a5b6621b64dea9adec43529728d7a0e374/script/TwyneDeployEulerIntegration.s.sol#L280-L284

Twyne Incremental Review

10 Final Remarks

The Twyne protocol maintains a solid foundation built on Euler Finance’s EVC and EVK
frameworks. This review identified one high-severity issue in the teleport() function, which
was promptly fixed by the team during the review. Afterward, a new scope was submitted and
reviewed.
The codebase remains straightforward with clear architecture. The team demonstrated strong
responsiveness in addressing all findings and implementing improvements, reinforcing confidence
in the protocol’s development practices.
The team provided extra fixes inside PR#36 that were not directly linked to findings, and these
commits were also reviewed, up to commit 1f7e12fd5aeb196a57691adec5a4396214c419cb which
corresponds to the merge of PR#35 and PR#36 into the main branch.

— 9 —

https://github.com/0xTwyne/twyne-contracts-v1/pull/36
https://github.com/0xTwyne/twyne-contracts-v1/commit/1f7e12fd5aeb196a57691adec5a4396214c419cb
https://github.com/0xTwyne/twyne-contracts-v1/pull/35
https://github.com/0xTwyne/twyne-contracts-v1/pull/36

	Review Summary
	Protocol Overview
	Audit Scope
	Risk Assessment Framework
	Severity Classification

	Key Findings
	Overall Assessment

	Audit Overview
	Project Information
	Audit Team
	Audit Resources
	Critical Findings
	High Findings
	Teleport should verify subaccount is tied to current borrower

	Medium Findings
	Low Findings
	Missing SafeERC20 operations

	Gas Savings Findings
	Gas improvements in EulerWrapper

	Informational Findings
	Unchecked approval parameter inside codebgEulerWrapper
	Ineffective locking mechanism in LeverageOperator
	Unused variable in LeverageOperator
	Empty contracts in deployment script

	Final Remarks

