
Prepared for
Goldilocks

Audited by
fedebianu
HHK

September 27, 2025

Goldilocks Goldilend
Smart Contract Security Assessment

Goldilocks Goldilend

Contents

Review Summary 3
1 Protocol Overview . 3
2 Audit Scope . 3
3 Risk Assessment Framework . 3

3.1 Severity Classification . 3
4 Key Findings . 3
5 Overall Assessment . 3

Audit Overview 4
1 Project Information . 4
2 Audit Team . 4
3 Audit Resources . 4
4 Critical Findings . 6

4.1 Attacker can steal all funds by repaying already repaid loans 6
4.2 Protocol can be drained by renewing already repaid or liquidated loans . 6

5 High Findings . 7
6 Medium Findings . 7

6.1 Missing slippage protection in borrowing functions 7
6.2 Users can exploit loan renewal to pay lower interest rates 8
6.3 Share value increase can be sandwiched, diluting historical lenders 9
6.4 Users can claim yield from NFTs they no longer own 10
6.5 Users can bypass the maximum loan duration through repeated renew()

calls . 10
6.6 Interest calculation on gross amount creates higher rates than expected . 11

7 Low Findings . 12
7.1 Inconsistent behavior between RebaseGoldilend and BeraBondGoldilend

contracts . 12
7.2 Zero poolSize allows unfair dilution of new depositors 12
7.3 Inefficient yield claiming may cause gas issues or reverts 13
7.4 Pool size limit can be bypassed through repeated renew() calls 14
7.5 Inconsistent deadline enforcement between repay() and renew() func-

tions . 14
7.6 calculateInterest() doesn’t enforce the same checks as borrow() . 15

8 Gas Savings Findings . 16
8.1 Redundant liquidation status check in liquidate() function 16
8.2 Inefficient use of safeTransferFrom() 17

9 Informational Findings . 17
9.1 Over-repayment results in asset loss . 17
9.2 Remove division by 100 in _calculateInterest() 18
9.3 glDebtAsset tokens do not accumulate yields in the contracts 18
9.4 Refactor initializeBeras() and initializeParameters() 19
9.5 Remove unnecessary onERC721Received() 20
9.6 Remove unnecessary unchecked blocks 20
9.7 Remove or use unused state variables . 21
9.8 Avoid code duplication between BeraBondGoldilend and

RebaseGoldilend contracts . 21

— 1 —

Goldilocks Goldilend

9.9 Avoid mismatch between loan ID and NFT ID position in userTokenIds 22
10 Final Remarks . 22

— 2 —

Goldilocks Goldilend

Review Summary

1 Protocol Overview

Goldilocks Goldilend is a fixed-term NFT lending protocol that enables users to borrow assets
using NFTs as collateral. The protocol features two main lending contracts: RebaseGoldilend
(supporting Rebase Bera NFTs with HONEY tokens) and BeraBondGoldilend (supporting
BeraBond NFTs with native BERA tokens). The system implements dynamic interest rates
based on utilization ratios and loan duration, with upfront interest payment and comprehensive
liquidation mechanisms.

2 Audit Scope

This audit covers three smart contracts totaling approximately 622 lines of code across 3 days of
review.

src/core/goldilend/

├── BeraBondGoldilend.sol

├── GoldilendDebtAsset.sol

└── RebaseGoldilend.sol

3 Risk Assessment Framework

3.1 Severity Classification

4 Key Findings

Breakdown of Finding Impacts

Impact Level Count

Critical 2

High 0

Medium 6

Low 6

Informational 9

Figure 1: Distribution of security findings by impact level

5 Overall Assessment

The protocol demonstrates a sophisticated design for NFT-backed lending with innovative
features like Token Bound Account integration. However, the audit revealed several critical
vulnerabilities.

— 3 —

Goldilocks Goldilend

Severity Description Potential Impact
Critical Immediate threat to user funds or protocol

integrity
Direct loss of funds, protocol
compromise

High Significant security risk requiring urgent
attention

Potential fund loss, major
functionality disruption

Medium Important issue that should be addressed Limited fund risk, functional-
ity concerns

Low Minor issue with minimal impact Best practice violations, minor
inefficiencies

Undetermined Findings whose impact could not be fully
assessed within the time constraints of the
engagement. These issues may range from
low to critical severity, and although their
exact consequences remain uncertain, they
present a sufficient potential risk to war-
rant attention and remediation.

Varies based on actual severity

Gas Findings that can improve the gas effi-
ciency of the contracts.

Reduced transaction costs

Informational Code quality and best practice recommen-
dations

Improved maintainability and
readability

Audit Overview

1 Project Information

Protocol Name: Goldilocks
Repository: https://github.com/0xgeeb/goldilocks-core
Commit Hash: 5875627dd0ad99d6a9bc620b474d33b7b5f61ff6
Commit URL: https://github.com/0xgeeb/goldilocks-
core/commit/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6

2 Audit Team

fedebianu, HHK

3 Audit Resources

Code repositories Previous audit

— 4 —

Goldilocks Goldilend

Category Mark Description

Access Control Good Access control is well implemented.

Mathematics Average Some inconsistency in how interests are calculated
upwards has been found.

Complexity Average The codebase has moderate complexity with clear
separation between different lending contracts. How-
ever, significant code duplication between BeraBond-
Goldilend and RebaseGoldilend contracts increases
maintenance burden and security risks.

Libraries Good Good use of established libraries like FixedPointMath-
Lib for mathematical operations and OpenZeppelin
contracts for standard functionality.

Decentralization Low The protocol relies entirely on a single multisig for
protocol management, creating significant trust as-
sumptions.

Code Stability Good Code wasn’t updated during the audit.

Documentation Average Basic documentation exists with clear function names
and comments, but lacks comprehensive documen-
tation of the lending mechanics, interest calculation
formulas, and risk parameters.

Monitoring Good Event emissions for key operations are in place.

Testing and
verification

Average Good test coverage with comprehensive unit tests,
fuzz tests, and invariant tests. However, some critical
bugs were not caught by existing tests, suggesting
gaps in test scenarios.

Table 1: Code Evaluation Matrix

— 5 —

Goldilocks Goldilend

4 Critical Findings

4.1 Attacker can steal all funds by repaying already repaid loans

The repay() function allows repayment of loans that have already been repaid, enabling
attackers to repeatedly withdraw their NFT collateral and drain protocol funds.

Technical Details

The repay() function in both RebaseGoldilend and BeraBondGoldilend lacks validation to
prevent repayment of already repaid loans.
The function caps the repayment amount to the borrowed amount:

1 if(repayAmount > userLoan.borrowedAmount) repayAmount = userLoan.borrowedAmount;

For already repaid loans where borrowedAmount is 0, this sets repayAmount to 0. The
function then marks the loan as repaid and returns the NFT collateral, regardless of whether
the loan was previously repaid.
An attacker can exploit this by: 1. Taking a loan and repaying it normally 2. Taking a new loan
3. Calling repay() with the old loan ID (and 1 wei payment to bypass the
if(msg.value == 0) revert InvalidAmount() check in BeraBondGoldilend version) 4.
Receiving the NFT collateral back for essentially free 5. Repeating steps 2-4 until all protocol
funds are drained

Impact

Critical. Attackers can steal all protocol funds by repeatedly exploiting already repaid loans.

Recommendation

Add a check to prevent repayment of already repaid and liquidated loans.

Developer Response

Fixed in commit ceac8609a462989fee645eb030f542fc1b01ea90.

4.2 Protocol can be drained by renewing already repaid or liquidated loans

When a user repays a loan completely, the collateral NFT is returned and the loan is marked as
repaid. However, renew() does not check if the loan has been repaid, allowing users to receive
new funds without providing any collateral.

Technical Details

A user can repay a loan completely with repay() in both BeraBondGoldilend and
RebaseGoldilend contracts. When the loan is fully repaid, the collateral NFT is transferred
back to the user, and repaid is set to true .

— 6 —

https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L221-L221
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L242-L242
https://github.com/0xgeeb/goldilocks-core/commit/ceac8609a462989fee645eb030f542fc1b01ea90

Goldilocks Goldilend

However, renew() does not verify if the loan has been repaid or if the collateral still exists,
allowing users to exploit this vulnerability.
The exploit works as follows:

1. User borrows funds with NFT collateral
2. User repays the loan completely, receiving back the NFT
3. User calls renew() on the same loanId

4. User receives new funds without providing any collateral
5. Repeat

This also applies to liquidation flow.

Impact

Critical. An attacker can steal all funds by renewing already repaid or liquidated loans without
providing any collateral.

Recommendation

Verify in renew() that userLoan.repaid == false and
userLoan.liquidated == false .

Developer Response

Fixed in commit 32980ec965b9a3e23d3631adf34c227f1e766066.

5 High Findings

None.

6 Medium Findings

6.1 Missing slippage protection in borrowing functions

The borrow() and renew() functions lack slippage protection, potentially causing users to
receive less funds than expected due to changing interest rates.

Technical Details

The functions borrow() and renew() in both RebaseGoldilend and BeraBondGoldilend do
not include slippage parameters.
Interest is paid upfront and can fluctuate based on: - Current utilization percentage - Protocol
parameters that the team can update
Between transaction submission and execution, interest calculations may change significantly,
causing users to receive less borrowed funds than anticipated. Users may only want to proceed
if their net borrowing amount meets a minimum threshold.

— 7 —

https://github.com/0xgeeb/goldilocks-core/commit/32980ec965b9a3e23d3631adf34c227f1e766066
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L157-L157
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L170-L170

Goldilocks Goldilend

Impact

Medium. Users may receive fewer borrowed funds than expected due to interest rate changes
between transaction preparation, submission, and execution.

Recommendation

Add a minOut parameter to both functions and validate that the amount sent to users meets
their minimum requirements.

Developer Response

Fixed in commit ad3b6f15f8dc9a64e60c8c99c4e10d7ebd1771f5.

6.2 Users can exploit loan renewal to pay lower interest rates

Users can repeatedly renew loans with short durations to pay significantly less interest than
they would by borrowing for the full intended duration upfront.

Technical Details

The function _calculateInterest() calculates interest with an exponential duration and
amount weight; longer durations, mainly, result in higher interest rates.
Users can exploit this by taking short-term loans and repeatedly calling renew() with short
durations instead of borrowing for the whole intended period.
Example calculation:

1 Parameters: rate = 20e18, debt = 100e18, borrowAmount = 50e18, poolSize = 200e18, slope

= 2e18

3 //Single 100-day loan:

4 _calculateInterest(borrowAmount, debt, 100 days) //→ 4.6e18 interest

6 //Ten 10-day renewals:

7 _calculateInterest(borrowAmount, debt, 10 days) //→ 0.29e18 per renewal

8 //Total for 100 days: 0.29e18 × 10 = 2.9e18 interest

10 //Savings: 4.6e18 - 2.9e18 = 1.7e18 (37% reduction)

Users can automate this process with bots to continuously renew loans and minimize interest
payments.

Impact

Medium. Users can exploit the interest calculation mechanism to pay significantly lower rates
than intended, reducing protocol revenue and creating unfair advantages for sophisticated users.

Recommendation

Implement a fixed renewal fee or modify the interest calculation to account for cumulative loan
duration, preventing users from gaming the system through frequent renewals.

— 8 —

https://github.com/0xgeeb/goldilocks-core/commit/ad3b6f15f8dc9a64e60c8c99c4e10d7ebd1771f5
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L287-L287
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L195-L195

Goldilocks Goldilend

Developer Response

Acknowledged, we believe this is not an issue. First, we have a minimum duration check, so
there is a minimum length that the loan will always be on renewals, and users will always have
to pay the interest on that duration up front. And it’s okay if a user gets a lower rate by
repeatedly renewing compared to doing one large loan, because the protocol is then taking on
less risk, because it is able to update the valuations of the collateral in between renewals.

6.3 Share value increase can be sandwiched, diluting historical lenders

The increaseglDebtAssetBacking() function instantly increases share value, allowing
attackers to sandwich the transaction and extract value intended for historical lenders.

Technical Details

The function increaseglDebtAssetBacking() can be called by the multisig to increase the
share value of the debtAsset token. This function is typically called after liquidations when
NFT collateral is sent to the multisig during liquidate() calls, and the team recovers
proceeds from liquidating the collateral or using insurance funds.
The share value increase is applied instantly, but at a later time than the liquidation, creating
two issues:

1. Sandwich attacks: An attacker can deposit large amounts just before the multisig calls
increaseglDebtAssetBacking() , then immediately withdraw after the transaction to
capture most of the value increase at the expense of historical lenders.

2. Historical lender dilution: Even without sandwich attacks, new depositors that deposited
just after the liquidation but before the call to increaseglDebtAssetBacking()

benefit from the share increase intended to reimburse historical lenders for liquidation
losses, diluting the compensation meant for those who suffered the original losses.

Impact

Medium. The share value increase mechanism can be exploited through sandwich attacks and
inherently dilutes compensation for historical lenders who suffered liquidation losses.

Recommendation

Consider implementing a streaming mechanism to distribute the backing increase over time, or
restrict deposits/withdrawals during the backing increase process. Alternatively, implement a
separate compensation mechanism that directly benefits affected lenders without diluting their
recovery through new deposits.

Developer Response

Fixed in commits fa8dbaf5e95732b62fde5cc23f83ce644198c381,
1c3480ea42f6f47987310b48d51977a570e28ba0, 5fa6ec612908c143c628212c2a65547bc7c7c092,
a73a57400c63248cbac6684c9f7eb45ed1d739cb and bdfaba489b74cb0fda9b0344beeea45b4a27c20a.

— 9 —

https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L386-L386
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L386-L386
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L386-L386
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L386-L386
https://github.com/0xgeeb/goldilocks-core/commit/fa8dbaf5e95732b62fde5cc23f83ce644198c381
https://github.com/0xgeeb/goldilocks-core/commit/1c3480ea42f6f47987310b48d51977a570e28ba0
https://github.com/0xgeeb/goldilocks-core/commit/5fa6ec612908c143c628212c2a65547bc7c7c092
https://github.com/0xgeeb/goldilocks-core/commit/a73a57400c63248cbac6684c9f7eb45ed1d739cb
https://github.com/0xgeeb/goldilocks-core/commit/bdfaba489b74cb0fda9b0344beeea45b4a27c20a

Goldilocks Goldilend

6.4 Users can claim yield from NFTs they no longer own

The claimYield() function allows users to claim rewards from NFTs they previously used as
collateral but no longer own, as it fails to verify the loan status.

Technical Details

When borrowing in the BeraBondGoldilend and contract, the NFT ID used is added to
userTokenIds .

When loans are repaid or liquidated in the BeraBondGoldilend contract, the NFT ID is not
deleted from the userTokenIds . Instead, it remains in storage, and the loan struct is updated
with liquidated or repaid set to true and borrowedAmount set to 0.
The claimYield() function allows users to claim rewards on Token Bound Accounts (TBAs)
linked to BeraBonds used as collateral. However, it does not verify whether the associated loans
are still active:
This creates a scenario where: 1. User A borrows against a BeraBond NFT 2. User A repays
the loan and retrieves the NFT 3. User A transfers the NFT to User B 4. User B uses the same
NFT as collateral for a new loan 5. User A can still call claimYield() to claim rewards from
the NFT now owned by User B
Additionally, borrow() will always push the NFT ID to the userTokenIds , no matter if it
has already been added in the past, leading to potential duplication of IDs inside the array.

Impact

Medium. Previous NFT holders can steal yield from current NFT owners who use the same ID.

Recommendation

Delete the NFT ID from the userTokenIds array when repaying or liquidating a loan.

Developer Response

Fixed in commit 00b5051aa34a8e82e9136af1a990d2423b6e3747 and
3a0e566db27f6ef69fe3b48f54473772e5f36a92.

6.5 Users can bypass the maximum loan duration through repeated renew() calls

The renew() function allows users to extend loans beyond the intended maxDuration limit
by calling the function multiple times consecutively.

Technical Details

In both BeraBondGoldilend and RebaseGoldilend, the renew() function validates that
newDuration falls within the minDuration and maxDuration bounds. However, it then
adds this duration to the existing loan:

1 newUserLoan.endDate += newDuration

— 10 —

https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L273-L273
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L170-L170
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L242-L242
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L273-L273
https://github.com/0xgeeb/goldilocks-core/commit/00b5051aa34a8e82e9136af1a990d2423b6e3747
https://github.com/0xgeeb/goldilocks-core/commit/3a0e566db27f6ef69fe3b48f54473772e5f36a92
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L211-L211
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L195-L195

Goldilocks Goldilend

This allows users to batch multiple renew() calls, each adding up to maxDuration to their
loan, effectively creating loans that last much longer than intended. A user could potentially
extend their loan indefinitely by repeatedly calling renew() with valid duration parameters.

Impact

Medium. Users can bypass the maximum duration restriction, creating liquidity issues for
depositors and circumventing protocol-intended loan limits.

Recommendation

Modify the renew() function to set the loan duration from the current timestamp rather than
extending it:

1 newUserLoan.endDate = block.timestamp + newDuration

This ensures loans never exceed the maximum allowed duration.

Developer Response

Fixed in commit b74bb183a2eb902d9ce9a3e8adc77d7015752b98 and
a2705e9e4e0df7944abbe8107854470a84f799e5.

6.6 Interest calculation on gross amount creates higher rates than expected

When a user borrows assets, the contract calculates and charges interest upfront, but it is
incorrectly deducted upfront and sent to the multisig. This results in higher borrowing rates
than expected.

Technical Details

Users can borrow assets with borrow() in both BeraBondGoldilend and
RebaseGoldilend contracts.

The issue occurs because:

1. Interest is calculated on the full borrowAmount requested
2. Interest is deducted upfront and sent to multisig
3. User receives only borrowAmount - interest

This creates a discrepancy where the effective interest rate paid by users is higher than the
nominal rate, as shown in the following example:

• User requests: 1000 BERA
• Interest calculated: 100 BERA (10% of 1000)
• User receives: 900 BERA (1000 - 100)
• Effective rate: 100/900 = 11.11% instead of 10%

Impact

Medium. Users pay higher effective interest rates than expected, especially problematic for high
rates or long durations. The contract also incorrectly tracks pool utilization, including interests.

— 11 —

https://github.com/0xgeeb/goldilocks-core/commit/b74bb183a2eb902d9ce9a3e8adc77d7015752b98
https://github.com/0xgeeb/goldilocks-core/commit/a2705e9e4e0df7944abbe8107854470a84f799e5
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L170
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L157

Goldilocks Goldilend

Recommendation

Transfer all the borrowAmount to the user and add the interest to it in storage. Check that
borrowAmount + interest is not above the NFT fair value, which is already in place.
Logic and checks involving borrowAmount should also be changed accordingly if needed.

Developer Response

Acknowledged.

7 Low Findings

7.1 Inconsistent behavior between RebaseGoldilend and BeraBondGoldilend contracts

Technical Details

There is inconsistent behavior between RebaseGoldilend and BeraBondGoldilend ; some
checks are done differently, which can lead to unexpected behavior.
For example inside repay() , inside the RebaseGoldilend the repayAmount is bounded to
outstandingDebt while inside the BeraBondGoldilend it is bounded to
userLoan.borrowedAmount .

This inconsistency may lead to different repayment calculations and behaviors between the two
contracts, potentially confusing users and creating integration issues.

Impact

Low. While it doesn’t seem to be creating major issues, this could lead to unexpected behavior
and assumptions between the two contracts.

Recommendation

Standardize the logic between both contracts to ensure consistent behavior.
Consider using a base contract and inheriting from it as suggested in
https://github.com/electisec/goldilocks-goldilend-report/issues/4.

Developer Response

Partially fixed in commit 0949d4b8ceeac999307e075577874bd8453d7867. Lack of Base contract
can still lead to inconsistencies.

7.2 Zero poolSize allows unfair dilution of new depositors

Technical Details

Liquidations can lower the poolSize down all the way to zero. When depositing, the function
_glDebtAssetMintAmount() returns the amount of shares depending on the current ratio

— 12 —

https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L221-L221
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L242-L242
https://github.com/0xgeeb/goldilocks-core/commit/0949d4b8ceeac999307e075577874bd8453d7867
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L343-L343

Goldilocks Goldilend

between supply and poolSize , unless one of the two is 0, in which case it will mint 1:1
shares per asset.
When withdrawing, it behaves differently - if the poolSize is 0, it will revert with a division
by zero error. This shouldn’t be a problem as the shares are worth zero, so there is no real
interest for a user to withdraw 0 assets.
However, there is an issue for depositors. If the poolSize is 0, then they will mint 1:1 shares,
increasing the backing for already existing shares, which will dilute the new depositors.
Example: - 100 shares exist, poolSize is 0 due to liquidations, the ratio is 0 - New user
deposits 100 assets, receives 100 shares - Now there are 200 shares for 100 assets, so the ratio
moved from 0 to 0.5 - Older users who experienced liquidations can withdraw up to 50 assets at
the cost of the new lender

Impact

Low. It’s unlikely that poolSize will drop all the way down to 0, and ideally, the team will be
able to reimburse liquidations promptly. However, an unaware user may end up depositing and
getting diluted.

Recommendation

Consider preventing deposits when poolSize == 0 but supply > 0

Developer Response

Fixed in commit 801a80be3a1fc6305d0596a593a742209a70a5c6.

7.3 Inefficient yield claiming may cause gas issues or reverts

The claimYield() function loops through all user NFT IDs, including those from repaid or
liquidated loans, causing unnecessary gas consumption and potential transaction failures.

Technical Details

The function claimYield() always iterates through the entire userTokenIds array.
This can be an issue as the array currently doesn’t see its NFT IDs removed from it when a user
repays his loan or gets liquidated. Additionally, a user may have yield available for only one
NFT ID, and not all of them. Attempting to claim on all of them will incur extra gas costs and
may even revert.

Impact

Low. Inefficient gas usage and potential denial of service for users with many historical loans.

Recommendation

Add parameters to allow partial claiming:

— 13 —

https://github.com/0xgeeb/goldilocks-core/commit/801a80be3a1fc6305d0596a593a742209a70a5c6
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L273-L273
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L273-L273

Goldilocks Goldilend

1 function claimYield(address[] memory rewardContracts, uint256 startIndex, uint256

endIndex) external {

2 // Only process userTokenIds[startIndex:endIndex]

3 }

This enables users to claim yield for a subset of NFT IDs instead of all at once.

Developer Response

Fixed in commit 1786177e49e0fab0ef602fa02d22e78c4a4ba77d and
00b5051aa34a8e82e9136af1a990d2423b6e3747.

7.4 Pool size limit can be bypassed through repeated renew() calls

The renew() function only checks the new borrow amount against the pool size limit, allowing
users to exceed the 10% borrowing restriction through multiple renewals.

Technical Details

The renew() function in both BeraBondGoldilend and RebaseGoldilend includes a check to
prevent borrowing more than 10% of the pool size:

1 if(newBorrowAmount > _poolSize / 10) revert InvalidLoanAmount();

However, this check only considers the newBorrowAmount parameter and ignores the user’s
existing borrowedAmount . This allows users to bypass the borrowing limit by calling
renew() multiple times with amounts just under the 10% threshold, accumulating a total
borrowed amount that exceeds the intended limit.

Impact

Low. The pool size borrowing limit can be easily circumvented, undermining the protocol’s risk
management controls.

Recommendation

Modify the check to include the existing borrowed amount:
1 if(userLoan.borrowedAmount + newBorrowAmount > _poolSize / 10) revert InvalidLoanAmount

();

Developer Response

Fixed in commit 302a158c767e1afe68de86aeb816652adff9318e.

7.5 Inconsistent deadline enforcement between repay() and renew() functions

The repay() function blocks repayment after the grace period expires, whereas renew()

allows loan extensions at any time, resulting in inconsistent behavior.

— 14 —

https://github.com/0xgeeb/goldilocks-core/commit/1786177e49e0fab0ef602fa02d22e78c4a4ba77d
https://github.com/0xgeeb/goldilocks-core/commit/00b5051aa34a8e82e9136af1a990d2423b6e3747
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L211-L211
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L211-L211
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L195-L195
https://github.com/0xgeeb/goldilocks-core/commit/302a158c767e1afe68de86aeb816652adff9318e

Goldilocks Goldilend

Technical Details

In both BeraBondGoldilend and RebaseGoldilend contracts, the repay() function includes a
check that prevents repayment once
block.timestamp > userLoan.endDate + LOAN_GRACE_PERIOD :

1 if(block.timestamp > userLoan.endDate + LOAN_GRACE_PERIOD) revert LoanExpired();

However, the renew() function lacks this same validation, allowing users to extend loans
indefinitely regardless of how far past the deadline they are.
This inconsistency enables users to bypass the repayment deadline restriction by: 1. Waiting
until after the grace period expires (when repay() would revert) 2. Calling renew() with
minimal parameters (short duration, small amount) 3. Immediately calling repay() since the
loan deadline has been reset

Impact

Low. Users can circumvent deadline restrictions through loan renewal, thereby undermining the
intended enforcement of the grace period.

Recommendation

Add the same deadline check to renew() for consistency:

1 if(block.timestamp > userLoan.endDate + LOAN_GRACE_PERIOD) revert LoanExpired();

Alternatively, remove the check from repay() to allow both functions to operate without
deadline restrictions.

Developer Response

Fixed in commit 59408f41680c11fa244296a60552f102e427b9fe.

7.6 calculateInterest() doesn’t enforce the same checks as borrow()

Technical Details

• _calculateInterest() calculates interest based on the total borrowedAmount , but
the last check against fairValue doesn’t account for existing interest that has already
been paid upfront, as it does in borrow() .

• _calculateInterest() doesn’t check for maxUtilization as it does in borrow() .

Impact

Low. This can lead to incorrect information being passed to the function caller.

— 15 —

https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L211-L211
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L221-L221
https://github.com/0xgeeb/goldilocks-core/commit/59408f41680c11fa244296a60552f102e427b9fe
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L263
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L173
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L263
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L172-L172

Goldilocks Goldilend

Recommendation

Modify _calculateInterest() in RebaseGoldilend as follows:

1 - if(borrowAmount > fairValue || borrowAmount > poolSize - debt) revert

BorrowLimitExceeded();

2 - return _calculateInterest(borrowAmount, debt, duration);

3 + uint256 _interest = _calculateInterest(borrowAmount, debt, duration);

4 + if(borrowAmount + interest > fairValue || borrowAmount > poolSize -

debt) revert BorrowLimitExceeded();

5 + if(debt + borrowAmount > poolSize * maxUtilization / 100) revert

MaxUtilizationExceeded();

6 + return _interest;

Developer Response

Fixed in commit f1b650fe146b22e53740f7d105298ae74eacbd59.

8 Gas Savings Findings

8.1 Redundant liquidation status check in liquidate() function

Technical Details

The liquidate() function in BeraBondGoldilend and RebaseGoldilend checks both
liquidated and borrowedAmount == 0 to determine if a loan is valid for liquidation:

1 if((block.timestamp < userLoan.endDate + LOAN_GRACE_PERIOD || userLoan.liquidated ||

userLoan.borrowedAmount == 0) revert InvalidLoan();

When a loan is repaid or liquidated, the borrowedAmount is set to 0. Since
borrowedAmount == 0 already identifies loans that cannot be liquidated, checking
userLoan.liquidated is redundant and wastes gas.

Impact

Gas savings.

Recommendation

Simplify the check by removing the redundant liquidated flag verification:

1 if((block.timestamp < userLoan.endDate + LOAN_GRACE_PERIOD || userLoan.borrowedAmount ==

0) revert InvalidLoan();

Developer Response

Fixed in commit 71fe0f7dfc8cb153ff013818389af52cc472258e.

— 16 —

https://github.com/0xgeeb/goldilocks-core/commit/f1b650fe146b22e53740f7d105298ae74eacbd59
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L261-L261
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L240-L240
https://github.com/0xgeeb/goldilocks-core/commit/71fe0f7dfc8cb153ff013818389af52cc472258e

Goldilocks Goldilend

8.2 Inefficient use of safeTransferFrom()

Technical Details

The contract uses safeTransferFrom() to transfer NFTs during liquidation, but since the
contract is already the owner of the NFT, received as collateral, using transfer() would be
more gas efficient. safeTransfer() performs additional checks, verifying if the recipient is a
contract by calling onERC721Received() , which are unnecessary as the multisig is a protocol
known contract.

Impact

Gas savings.

Recommendation

Replace safeTransferFrom() with transfer() in the liquidation function since the
contract is already the owner of the NFT.

Developer Response

Fixed in commit b32554a839dee30012476659371288fd58159b3b.

9 Informational Findings

9.1 Over-repayment results in asset loss

Technical Details

The repay() function in both BeraBondGoldilend and RebaseGoldilend allows users to send
more assets than their outstanding loan balance.
While the function caps the repayment amount:

1 if(repayAmount > userLoan.borrowedAmount) repayAmount = userLoan.borrowedAmount;

The excess payment is neither refunded to the user nor used to increase the debtAsset

backing, resulting in permanent loss of the overpaid assets.

Impact

Informational. Users who accidentally overpay lose their excess funds with no recovery
mechanism.

Recommendation

Consider reverting when the payment exceeds the loan’s borrowedAmount to prevent
accidental asset loss.

— 17 —

https://github.com/0xgeeb/goldilocks-core/commit/b32554a839dee30012476659371288fd58159b3b
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/BeraBondGoldilend.sol#L242-L242
https://github.com/0xgeeb/goldilocks-core/blob/5875627dd0ad99d6a9bc620b474d33b7b5f61ff6/src/core/goldilend/RebaseGoldilend.sol#L221-L221

Goldilocks Goldilend

Developer Response

Fixed in commit fff7ad21293a8c8ea542dedcde5b828e25003e46.

9.2 Remove division by 100 in _calculateInterest()

Technical Details

_calculateInterest() uses an unnecessary division by 100 at the end, which can be
eliminated by appropriately setting the protocolInterestRate in 1e18 precision format
instead of the current 1e20 format.

Impact

Informational.

Recommendation

Change the initialization of protocolInterestRate with a 1e18 precision format value, and
remove the /100 division at the end of _calculateInterest . This will make the interest
calculation more transparent.

Developer Response

Fixed in commit a976a5f3c7515762ea14dc73a9689043b39d77ad.

9.3 glDebtAsset tokens do not accumulate yields in the contracts

Technical Details

The glDebtAsset tokens are minted when users deposit assets. However, when interests are
accrued, these funds are sent directly to the multisig instead of being added to the pool. This
means that while glDebtAsset tokens represent pool shares, they do not accumulate value
over time as users would expect from a vault-like system.

Impact

Informational. Devs state that all revenue/interest goes to a multisig that then bribes a
Berachain reward vault for the lending receipt token.

Recommendation

Clearly document the whole process.

— 18 —

https://github.com/0xgeeb/goldilocks-core/commit/fff7ad21293a8c8ea542dedcde5b828e25003e46
https://github.com/0xgeeb/goldilocks-core/commit/a976a5f3c7515762ea14dc73a9689043b39d77ad

Goldilocks Goldilend

Developer Response

Acknowledged, this process will be outlined in the documentation, UI, and marketing materials.

9.4 Refactor initializeBeras() and initializeParameters()

Technical Details

initializeBeras() and initializeParameters() contain duplicated code, as the same
logic already exists in changeValue() and changeLendingParams() .

Impact

Informational.

Recommendation

Refactor initializeBeras() and initializeParameters() , eliminating the duplicated
logic:

1 function initializeParameters(

2 uint256 _protocolInterestRate,

3 uint256 _minDuration,

4 uint256 _maxDuration,

5 uint256 _slope,

6 uint256 _maxUtilization

7) external {

8 if (msg.sender != multisig) revert NotMultisig();

9 if (parametersInitialized) revert AlreadyInitialized();

11 setParameters(_protocolInterestRate, _minDuration, _maxDuration, _slope,

_maxUtilization);

13 parametersInitialized = true;

14 }

16 function initializeBeras(address[] calldata _nfts, uint256[] calldata _nftFairValues)

external {

17 if (msg.sender != multisig) revert NotMultisig();

18 if (berasInitialized) revert AlreadyInitialized();

20 changeValue(_nfts, _nftFairValues);

22 berasInitialized = true;

23 borrowingActive = true;

24 }

setParameters() and changeValue() must be made public .

Developer Response

Fixed in commit 6e764b7ae95d33a55956c2f2dcc73db6e3e4e2f0.

— 19 —

https://github.com/0xgeeb/goldilocks-core/commit/6e764b7ae95d33a55956c2f2dcc73db6e3e4e2f0

Goldilocks Goldilend

9.5 Remove unnecessary onERC721Received()

Technical Details

Both BeraBondGoldilend and RebaseGoldilend contracts implement
onERC721Received() , which is unnecessary as the contracts only need to receive NFTs as
collateral during borrow() . This theoretically allows users to accidentally send NFTs to the
contract even though the use of safeTranferFrom() , potentially resulting in locked assets.

Impact

Informational.

Recommendation

Remove the onERC721Received() function entirely.

Developer Response

Fixed in commit 5efe6fe80f72f7edfe36f7ad460cec076980454f.

9.6 Remove unnecessary unchecked blocks

Technical Details

The contract uses unchecked blocks in loops, which are no longer necessary from Solidity
version 0.8.22 as the compiler automatically handles loop variable increments optimization.

Impact

Informational.

Recommendation

Remove unchecked blocks in loops. This will improve code readability.

Developer Response

Fixed in commit 981ca4f4ac519b9c789063f7dc463f2ed12e4904.

— 20 —

https://github.com/0xgeeb/goldilocks-core/commit/5efe6fe80f72f7edfe36f7ad460cec076980454f
https://github.com/0xgeeb/goldilocks-core/commit/981ca4f4ac519b9c789063f7dc463f2ed12e4904

Goldilocks Goldilend

9.7 Remove or use unused state variables

Technical Details

• Both BeraBondGoldilend and RebaseGoldilend contracts declare a
multisigClaims state variable that is never used.

• In RebaseGoldilend , the state variable timelock is never used.

Impact

Informational.

Recommendation

Remove the variable from both contracts or use them.

Developer Response

Fixed in commit 63a94a3c4d05115ba52978c5f3a950cdcee4e7fc.

9.8 Avoid code duplication between BeraBondGoldilend and RebaseGoldilend contracts

Technical Details

Both BeraBondGoldilend and RebaseGoldilend contracts contain identical
implementations for internal functions, variables, and some checks, leading to code duplication.
While the main functions (borrow, repay, renew, liquidate) have similar logic but handle
different collateral types, the internal mathematical and utility functions are completely
duplicated.
This duplication means: - Security fixes for internal functions must be applied to both contracts
- Bug fixes risk being missed in one of the contracts - Future development should be done twice
with error risk

Impact

Informational.

Recommendation

Refactor the common code into a base contract that both BeraBondGoldilend and
RebaseGoldilend can inherit from.

Developer Response

Acknowledged, thank you for this issue. These contracts previously did inherit from the same
base contract, but I thought that, due to the native token debt asset and collateral-specific
functions in BeraBondGoldilend, separate contracts were necessary.

— 21 —

https://github.com/0xgeeb/goldilocks-core/commit/63a94a3c4d05115ba52978c5f3a950cdcee4e7fc

Goldilocks Goldilend

9.9 Avoid mismatch between loan ID and NFT ID position in userTokenIds

Technical Details

When a user borrows assets, the contract creates a loan with ID userLoansLength + 1 but
stores the NFT ID in userTokenIds[msg.sender].push(collateralNFTId) . This creates
a mismatch between loan IDs and their corresponding NFT positions in the array.

Impact

Informational.

Recommendation

Fix the mismatch by either using the same ID for both the loan and the NFT position.

Developer Response

Acknowledged.

10 Final Remarks

Major issues were identified during the audit and subsequently addressed. However, we suggest
another audit to ensure production readiness. The test suite, while comprehensive, needs
enhancement to catch edge cases and complex interaction scenarios that were missed in the
initial testing. Additionally, the documentation requires significant expansion to provide clear
explanations of the lending mechanics, interest rate formulas, risk parameters, and protocol
governance structure.

— 22 —

	Review Summary
	Protocol Overview
	Audit Scope
	Risk Assessment Framework
	Severity Classification

	Key Findings
	Overall Assessment

	Audit Overview
	Project Information
	Audit Team
	Audit Resources
	Critical Findings
	Attacker can steal all funds by repaying already repaid loans
	Protocol can be drained by renewing already repaid or liquidated loans

	High Findings
	Medium Findings
	Missing slippage protection in borrowing functions
	Users can exploit loan renewal to pay lower interest rates
	Share value increase can be sandwiched, diluting historical lenders
	Users can claim yield from NFTs they no longer own
	Users can bypass the maximum loan duration through repeated codebgrenew() calls
	Interest calculation on gross amount creates higher rates than expected

	Low Findings
	Inconsistent behavior between RebaseGoldilend and BeraBondGoldilend contracts
	Zero codebgpoolSize allows unfair dilution of new depositors
	Inefficient yield claiming may cause gas issues or reverts
	Pool size limit can be bypassed through repeated codebgrenew() calls
	Inconsistent deadline enforcement between codebgrepay() and codebgrenew() functions
	codebgcalculateInterest() doesn't enforce the same checks as codebgborrow()

	Gas Savings Findings
	Redundant liquidation status check in codebgliquidate() function
	Inefficient use of codebgsafeTransferFrom()

	Informational Findings
	Over-repayment results in asset loss
	Remove division by codebg100 in codebg_calculateInterest()
	codebgglDebtAsset tokens do not accumulate yields in the contracts
	Refactor codebginitializeBeras() and codebginitializeParameters()
	Remove unnecessary codebgonERC721Received()
	Remove unnecessary codebgunchecked blocks
	Remove or use unused state variables
	Avoid code duplication between codebgBeraBondGoldilend and codebgRebaseGoldilend contracts
	Avoid mismatch between loan ID and NFT ID position in codebguserTokenIds

	Final Remarks

